p-books.com
Lectures and Essays
by T.H. Huxley
Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse

The front view (Figure 23, B) shows that the roof of the skull was very regularly and elegantly arched in the transverse direction, and that the transverse diameter was a little less below the parietal protuberances, than above them. The forehead cannot be called narrow in relation to the rest of the skull, nor can it be called a retreating forehead; on the contrary, the antero-posterior contour of the skull is well arched, so that the distance along that contour, from the nasal depression to the occipital protuberance, measures about 13.75 inches. The transverse arc of the skull, measured from one auditory foramen to the other, across the middle of the sagittal suture, is about 13 inches. The sagittal suture itself is 5.5 inches long.

The supraciliary prominences or brow-ridges (on each side of 'a', Figure 22) are well, but not excessively, developed, and are separated by a median depression. Their principal elevation is disposed so obliquely that I judge them to be due to large frontal sinuses.

If a line joining the glabella and the occipital protuberance ('a', 'b', Figure 22) be made horizontal, no part of the occipital region projects more than 1/10th of an inch behind the posterior extremity of that line, and the upper edge of the auditory foramen ('c') is almost in contact with a line drawn parallel with this upon the outer surface of the skull.

A transverse line drawn from one auditory foramen to the other traverses, as usual, the forepart of the occipital foramen. The capacity of the interior of this fragmentary skull has not been ascertained.

The history of the Human remains from the cavern in the Neanderthal may best be given in the words of their original describer, Dr Schaaffhausen,* as translated by Mr. Busk. ([Footnote] *ON THE CRANIA OF THE MOST ANCIENT RACES OF MAN. By Professor D. Schaaffhausen, of Bonn. (From Muller's 'Archiv.', 1858, pp. 453.) With Remarks, and original Figures, taken from a Cast of the Neanderthal Cranium. By George Busk, F.R.S., etc. 'Natural History Review'. April, 1861.)

"In the early part of the year 1857, a human skeleton was discovered in a limestone cave in the Neanderthal, near Hochdal, between Dusseldorf and Elberfeld. Of this, however, I was unable to procure more than a plaster cast of the cranium, taken at Elberfeld, from which I drew up an account of its remarkable conformation, which was, in the first instance, read on the 4th of February, 1857, at the meeting of the Lower Rhine Medical and Natural History Society, at Bonn.* ([Footnote] *'Verhandl. d. Naturhist.' Vereins der Preuss. Rheinlande und Westphalens., xiv. Bonn, 1857.)

Subsequently Dr. Fuhlrott, to whom science is indebted for the preservation of these bones, which were not at first regarded as human, and into whose possession they afterwards came, brought the cranium from Elberfeld to Bonn, and entrusted it to me for more accurate anatomical examination. At the General Meeting of the Natural History Society of Prussian Rhineland and Westphalia, at Bonn, on the 2nd of June, 1857,* Dr Fuhlrott himself gave a full account of the locality, and of the circumstances under which the discovery was made. ([Footnote] *'Ib. Correspondenzblatt. No. 2.)

He was of opinion that the bones might be regarded as fossil; and in coming to this conclusion, he laid especial stress upon the existence of dendritic deposits, with which their surface was covered, and which were first noticed upon them by Professor Meyer. To this communication I appended a brief report on the results of my anatomical examination of the bones. The conclusions at which I arrived were:—1st. That the extraordinary form of the skull was due to a natural conformation hitherto not known to exist, even in the most barbarous races. 2nd. That these remarkable human remains belonged to a period antecedent to the time of the Celts and Germans, and were in all probability derived from one of the wild races of North-western Europe, spoken of by Latin writers; and which were encountered as autochthones by the German immigrants. And 3rdly. That it was beyond doubt that these human relics were traceable to a period at which the latest animals of the diluvium still existed; but that no proof of this assumption, nor consequently of their so-termed 'fossil' condition, was afforded by the circumstances under which the bones were discovered.

(FIGURE 23.—The Engis skull viewed from above (A) and in front (B).)

"As Dr. Fuhlrott has not yet published his description of these circumstances, I borrow the following account of them from one of his letters. 'A small cave or grotto, high enough to admit a man, and about 15 feet deep from the entrance, which is 7 or 8 feet wide, exists in the southern wall of the gorge of the Neanderthal, as it is termed, at a distance of about 100 feet from the Dussel, and about 60 feet above the bottom of the valley. In its earlier and uninjured condition, this cavern opened upon a narrow plateau lying in front of it, and from which the rocky wall descended almost perpendicularly into the river. It could be reached, though with difficulty, from above. The uneven floor was covered to a thickness of 4 or 5 feet with a deposit of mud, sparingly intermixed with rounded fragments of chert. In the removing of this deposit, the bones were discovered. The skull was first noticed, placed nearest to the entrance of the cavern; and further in, the other bones, lying in the same horizontal plane. Of this I was assured, in the most positive terms, by two labourers who were employed to clear out the grotto, and who were questioned by me on the spot. At first no idea was entertained of the bones being human; and it was not till several weeks after their discovery that they were recognised as such by me, and placed in security. But, as the importance of the discovery was not at the time perceived, the labourers were very careless in the collecting, and secured chiefly only the larger bones; and to this circumstance it may be attributed that fragments merely of the probably perfect skeleton came into my possession'

"My anatomical examination of these bones afforded the following results:—

"The cranium is of unusual size, and of a long elliptical form. A most remarkable peculiarity is at once obvious in the extraordinary development of the frontal sinuses, owing to which the superciliary ridges, which coalesce completely in the middle, are rendered so prominent, that the frontal bone exhibits a considerable hollow or depression above, or rather behind them, whilst a deep depression is also formed in the situation of the root of the nose. The forehead is narrow and low, though the middle and hinder portions of the cranial arch are well developed. Unfortunately, the fragment of the skull that has been preserved consists only of the portion situated above the roof of the orbits and the superior occipital ridges, which are greatly developed, and almost conjoined so as to form a horizontal eminence. It includes almost the whole of the frontal bone, both parietals, a small part of the squamous and the upper-third of the occipital. The recently fractured surfaces show that the skull was broken at the time of its disinterment. The cavity holds 16,876 grains of water, whence its cubical contents may be estimated at 57.64 inches, or 1033.24 cubic centimetres. In making this estimation, the water is supposed to stand on a level with the orbital plate of the frontal, with the deepest notch in the squamous margin of the parietal, and with the superior semicircular ridges of the occipital. Estimated in dried millet-seed, the contents equalled 31 ounces, Prussian Apothecaries' weight. The semicircular line indicating the upper boundary of the attachment of the temporal muscle, though not very strongly marked, ascends nevertheless to more than half the height of the parietal bone. On the right superciliary ridge is observable an oblique furrow or depression, indicative of an injury received during life.* ([Footnote] *This, Mr. Busk has pointed out, is probably the notch for the frontal nerve.) The coronal and sagittal sutures are on the exterior nearly closed, and on the inside so completely ossified as to have left no traces whatever, whilst the lambdoidal remains quite open. The depressions for the Pacchionian glands are deep and numerous; and there is an unusually deep vascular groove immediately behind the coronal suture, which, as it terminates in the foramen, no doubt transmitted a 'vena emissaria'. The course of the frontal suture is indicated externally by a slight ridge; and where it joins the coronal, this ridge rises into a small protuberance. The course of the sagittal suture is grooved, and above the angle of the occipital bone the parietals are depressed.

[Column 1: Anatomical Feature, Column 2: Measurement in] millimetres.*

([Footnote] *The numbers in brackets are those which I should assign to the different measures, as taken from the plaster cast.—G. B.)

The length of the skull from the nasal process of the frontal over the vertex to the superior semicircular lines of the occipital measures...303 (300) = 12.0".

Circumference over the orbital ridges and the superior semicircular lines of the occipital...590 (590) = 23.37" or 23".

Width of the frontal from the middle of the temporal line on one side to the same point on the opposite...104 (114) = 4.1"—4.5".

Length of the frontal from the nasal. process to the coronal suture...133 (125) = 5.25"—5".

Extreme width of the frontal sinuses...25 (23) = 1.0"—0.9".

Vertical height above a line joining the deepest notches in the squamous border of the parietals...70 = 2.75".

Width of hinder part of skull from one parietal protuberance to the other...138 (150) = 5.4"—5.9"

Distance from the upper angle of the occipital to the superior semicircular lines...51 (60) = 1.9"—2.4".

Thickness of the bone at the parietal protuberance...8.

—at the angle of the occipital...9.

—at the superior semicircular line of the occipital...10 = 0.3"

"Besides the cranium, the following bones have been secured:—

"1. Both thigh-bones, perfect. These, like the skull, and all the other bones, are characterized by their unusual thickness, and the great development of all the elevations and depressions for the attachment of muscles. In the Anatomical Museum at Bonn, under the designation of 'Giant's-bones,' are some recent thigh-bones, with which in thickness the foregoing pretty nearly correspond, although they are shorter.

[First value =] Giant's bones, [Second value =] Fossil bones in mm.

Length...542 = 21.4"...438 = 17.4".

Diameter of head of femur...54 = 2.14"...53 = 2.0".

Diameter of lower articular end, from one condyle to the other...89 = 3.5"...87 = 3.4".

Diameter of femur in the middle...33 = 1.2"...30 = 1.1".

"2. A perfect right humerus, whose size shows that it belongs to the thigh-bones.

mm.

Length...312 = 12.3".

Thickness in the middle...26 = 1.0".

Diameter of head...49 = 1.9".

"Also a perfect right radius of corresponding dimensions, and the upper-third of a right ulna corresponding to the humerus and radius.

"3. A left humerus of which the upper-third is wanting, and which is so much slenderer than the right as apparently to belong to a distinct individual; a left 'ulna', which, though complete, is pathologically deformed, the coronoid process being so much enlarged by bony growth, that flexure of the elbow beyond a right angle must have been impossible; the anterior fossa of the humerus for the reception of the coronoid process being also filled up with a similar bony growth. At the same time, the olecranon is curved strongly downwards. As the bone presents no sign of rachitic degeneration, it may be supposed that an injury sustained during life was the cause of the anchylosis. When the left ulna is compared with the right radius, it might at first sight be concluded that the bones respectively belonged to different individuals, the ulna being more than half an inch too short for articulation with a corresponding radius. But it is clear that this shortening, as well as the attenuation of the left humerus, are both consequent upon the pathological condition above described.

"4. A left 'ilium', almost perfect, and belonging to the femur: a fragment of the right 'scapula'; the anterior extremity of a rib of the right side; and the same part of a rib of the left side; the hinder part of a rib of the right side; and lastly, two hinder portions and one middle portion of ribs, which from their unusually rounded shape, and abrupt curvature, more resemble the ribs of a carnivorous animal than those of a man. Dr. H. v. Meyer, however, to whose judgment I defer, will not venture to declare them to be ribs of any animal; and it only remains to suppose that this abnormal condition has arisen from an unusually powerful development of the thoracic muscles.

"The bones adhere strongly to the tongue, although, as proved by the use of hydrochloric acid, the greater part of the cartilage is still retained in them, which appears, however, to have undergone that transformation into gelatine which has been observed by v. Bibra in fossil bones. The surface of all the bones is in many spots covered with minute black specks, which, more especially under a lens, are seen to be formed of very delicate 'dendrites'. These deposits, which were first observed on the bones by Dr. Meyer, are most distinct on the inner surface of the cranial bones. They consist of a ferruginous compound, and, from their black colour, may be supposed to contain manganese. Similar dendritic formations also occur, not unfrequently, on laminated rocks, and are usually found in minute fissures and cracks. At the meeting of the Lower Rhine Society at Bonn, on the 1st April, 1857, Prof. Meyer stated that he had noticed in the museum of Poppelsdorf similar dendritic crystallizations on several fossil bones of animals, and particularly on those of 'Ursus spelaeus', but still more abundantly and beautifully displayed on the fossil bones and teeth of 'Equus adamiticus', 'Elephas primigenius', etc., from the caves of Bolve and Sundwig. Faint indications of similar 'dendrites' were visible in a Roman skull from Siegburg; whilst other ancient skulls, which had lain for centuries in the earth, presented no trace of them.* ([Footnote] *'Verh. des Naturhist'. Vereins in Bonn, xiv. 1857.)

I am indebted to H. v. Meyer for the following remarks on this subject:—

'The incipient formation of dendritic deposits, which were formerly regarded as a sign of a truly fossil condition, is interesting. It has even been supposed that in diluvial deposits the presence of 'dendrites' might be regarded as affording a certain mark of distinction between bones mixed with the diluvium at a somewhat later period and the true diluvial relics, to which alone it was supposed that these deposits were confined. But I have long been convinced that neither can the absence of 'dendrites' be regarded as indicative of recent age, nor their presence as sufficient to establish the great antiquity of the objects upon which they occur. I have myself noticed upon paper, which could scarcely be more than a year old, dendritic deposits, which could not be distinguished from those on fossil bones. Thus I possess a dog's skull from the Roman colony of the neighbouring Heddersheim, 'Castrum Hadrianum', which is in no way distinguishable from the fossil bones from the Frankish caves; it presents the same colour, and adheres to the tongue just as they do; so that this character also, which, at a former meeting of German naturalists at Bonn, gave rise to amusing scenes between Buckland and Schmerling, is no longer of any value. In disputed cases, therefore, the condition of the bone can scarcely afford the means for determining with certainty whether it be fossil, that is to say, whether it belong to geological antiquity or to the historical period.'

"As we cannot now look upon the primitive world as representing a wholly different condition of things, from which no transition exists to the organic life of the present time, the designation of 'fossil', as applied to 'a bone', has no longer the sense it conveyed in the time of Cuvier. Sufficient grounds exist for the assumption that man coexisted with the animals found in the 'diluvium'; and many a barbarous race may, before all historical time, have disappeared, together with the animals of the ancient world, whilst the races whose organization is improved have continued the genus. The bones which form the subject of this paper present characters which, although not decisive as regards a geological epoch, are, nevertheless, such as indicate a very high antiquity. It may also be remarked that, common as is the occurrence of diluvial animal bones in the muddy deposits of caverns, such remains have not hitherto been met with in the caves of the Neanderthal; and that the bones, which were covered by a deposit of mud not more than four or five feet thick, and without any protective covering of stalagmite, have retained the greatest part of their organic substance.

"These circumstances might be adduced against the probability of a geological antiquity. Nor should we be justified in regarding the cranial conformation as perhaps representing the most savage primitive type of the human race, since crania exist among living savages, which, though not exhibiting, such a remarkable conformation of the forehead, which gives the skull somewhat the aspect of that of the large apes, still in other respects, as for instance in the greater depth of the temporal fossae, the crest-like, prominent temporal ridges, and a generally less capacious cranial cavity, exhibit an equally low stage of development. There is no reason for supposing that the deep frontal hollow is due to any artificial flattening, such as is practised in various modes by barbarous nations in the Old and New World. The skull is quite symmetrical, and shows no indication of counter-pressure at the occiput, whilst, according to Morton, in the Flat-heads of the Columbia, the frontal and parietal bones are always unsymmetrical. Its conformation exhibits the sparing development of the anterior part of the head which has been so often observed in very ancient crania, and affords one of the most striking proofs of the influence of culture and civilization on the form of the human skull."

In a subsequent passage, Dr. Schaaffhausen remarks:

"There is no reason whatever for regarding the unusual development of the frontal sinuses in the remarkable skull from the Neanderthal as an individual or pathological deformity; it is unquestionably a typical race-character, and is physiologically connected with the uncommon thickness of the other bones of the skeleton, which exceeds by about one-half the usual proportions. This expansion of the frontal sinuses, which are appendages of the air-passages, also indicates an unusual force and power of endurance in the movements of the body, as may be concluded from the size of all the ridges and processes for the attachment of the muscles or bones. That this conclusion may be drawn from the existence of large frontal sinuses, and a prominence of the lower frontal region, is confirmed in many ways by other observations. By the same characters, according to Pallas, the wild horse is distinguished from the domesticated, and, according to Cuvier, the fossil cave-bear from every recent species of bear, whilst, according to Roulin, the pig, which has become wild in America, and regained a resemblance to the wild boar, is thus distinguished from the same animal in the domesticated state, as is the chamois from the goat; and, lastly, the bull-dog, which is characterised by its large bones and strongly-developed muscles from every other kind of dog. The estimation of the facial angle, the determination of which, according to Professor Owen, is also difficult in the great apes, owing to the very prominent supra-orbital ridges, in the present case is rendered still more difficult from the absence both of the auditory opening and of the nasal spine. But if the proper horizontal position of the skull be taken from the remaining portions of the orbital plates, and the ascending line made to touch the surface of the frontal bone behind the prominent supra-orbital ridges, the facial angle is not found to exceed 56 degrees.* ([Footnote] *Estimating the facial angle in the way suggested, on the cast I should place it at 64 degrees to 67 degrees.—G. B.) Unfortunately, no portions of the facial bones, whose conformation is so decisive as regards the form and expression of the head, have been preserved. The cranial capacity, compared with the uncommon strength of the corporeal frame, would seem to indicate a small cerebral development. The skull, as it is, holds about 31 ounces of millet-seed; and as, from the proportionate size of the wanting bones, the whole cranial cavity should have about 6 ounces more added, the contents, were it perfect, may be taken at 37 ounces. Tiedemann assigns, as the cranial contents in the Negro, 40, 38, and 35 ounces. The cranium holds rather more than 36 ounces of water, which corresponds to a capacity of 1033.24 cubic centimetres. Huschke estimates the cranial contents of a Negress at 1127 cubic centimetres; of an old Negro at 1146 cubic centimetres. The capacity of the Malay skulls, estimated by water, equalled 36, 33 ounces, whilst in the diminutive Hindoos it falls to as little as 27 ounces."

After comparing the Neanderthal cranium with many others, ancient and modern, Professor Schaaffhausen concludes thus:—

"But the human bones and cranium from the Neanderthal exceed all the rest in those peculiarities of conformation which lead to the conclusion of their belonging to a barbarous and savage race. Whether the cavern in which they were found, unaccompanied with any trace of human art, were the place of their interment, or whether, like the bones of extinct animals elsewhere, they had been washed into it, they may still be regarded as the most ancient memorial of the early inhabitants of Europe."

Mr. Busk, the translator of Dr. Schaaffhausen's paper, has enabled us to form a very vivid conception of the degraded character of the Neanderthal skull, by placing side by side with its outline, that of the skull of a Chimpanzee, drawn to the same absolute size.

Some time after the publication of the translation of Professor Schaaffhausen's Memoir, I was led to study the cast of the Neanderthal cranium with more attention than I had previously bestowed upon it, in consequence of wishing to supply Sir Charles Lyell with a diagram, exhibiting the special peculiarities of this skull, as compared with other human skulls. In order to do this it was necessary to identify, with precision, those points in the skulls compared which corresponded anatomically. Of these points, the glabella was obvious enough; but when I had distinguished another, defined by the occipital protuberance and superior semicircular line, and had placed the outline of the Neanderthal skull against that of the Engis skull, in such a position that the glabella and occipital protuberance of both were intersected by the same straight line, the difference was so vast and the flattening of the Neanderthal skull so prodigious (compare Figs. 22 and 24, A.), that I at first imagined I must have fallen into some error. And I was the more inclined to suspect this, as, in ordinary human skulls, the occipital protuberance and superior semicircular curved line on the exterior of the occiput correspond pretty closely with the 'lateral sinuses' and the line of attachment of the tentorium internally. But on the tentorium rests, as I have said in the preceding Essay, the posterior lobe of the brain; and hence, the occipital protuberance, and the curved line in question, indicate, approximately, the lower limits of that lobe. Was it possible for a human being to have the brain thus flattened and depressed; or, on the other hand, had the muscular ridges shifted their position? In order to solve these doubts, and to decide the question whether the great supraciliary projections did, or did not, arise from the development of the frontal sinuses, I requested Sir Charles Lyell to be so good as to obtain for me from Dr. Fuhlrott, the possessor of the skull, answers to certain queries, and if possible a cast, or at any rate drawings, or photographs, of the interior of the skull.

(FIGURE 24.—The skull from the Neanderthal cavern. A. side, B. front, and C. top view. One-third the natural size, by Mr. Busk: the details from the cast and from Dr. Fuhlrott's photographs. 'a' glabella; 'b' occipital protuberance; 'd' lambdoidal suture.)

Dr. Fuhlrott replied with a courtesy and readiness for which I am infinitely indebted to him, to my inquiries, and furthermore sent three excellent photographs. One of these gives a side view of the skull, and from it Figure 24, A. has been shaded. The second (Figure 25, A.) exhibits the wide openings of the frontal sinuses upon the inferior surface of the frontal part of the skull, into which, Dr. Fuhlrott writes, "a probe may be introduced to the depth of an inch," and demonstrates the great extension of the thickened supraciliary ridges beyond the cerebral cavity. The third, lastly (Figure 25, B.) exhibits the edge and the interior of the posterior, or occipital, part of the skull, and shows very clearly the two depressions for the lateral sinuses, sweeping inwards towards the middle line of the roof of the skull, to form the longitudinal sinus. It was clear, therefore, that I had not erred in my interpretation, and that the posterior lobe of the brain of the Neanderthal man must have been as much flattened as I suspected it to be.

In truth, the Neanderthal cranium has most extraordinary characters. It has an extreme length of 8 inches, while its breadth is only 5.75 inches, or, in other words, its length is to its breadth as 100:72. It is exceedingly depressed, measuring only about 3.4 inches from the glabello-occipital line to the vertex. The longitudinal arc, measured in the same way as in the Engis skull, is 12 inches; the transverse arc cannot be exactly ascertained, in consequence of the absence of the temporal bones, but was probably about the same, and certainly exceeded 10 1/4 inches. The horizontal circumference is 23 inches. But this great circumference arises largely from the vast development of the supraciliary ridges, though the perimeter of the brain case itself is not small. The large supraciliary ridges give the forehead a far more retreating appearance than its internal contour would bear out.

To an anatomical eye the posterior part of the skull is even more striking than the anterior. The occipital protuberance occupies the extreme posterior end of the skull, when the glabello-occipital line is made horizontal, and so far from any part of the occipital region extending beyond it, this region of the skull slopes obliquely upward and forward, so that the lambdoidal suture is situated well upon the upper surface of the cranium. At the same time, notwithstanding the great length of the skull, the sagittal suture is remarkably short (4 1/2 inches), and the squamosal suture is very straight.

(FIGURE 25.—Drawings from Dr. Fuhlrott's photographs of parts of the interior of the Neanderthal cranium. A. view of the under and inner surface of the frontal region, showing the inferior apertures of the frontal sinuses ('a'). B. corresponding view of the occipital region of the skull, showing the impressions of the lateral sinuses ('a a').)

In reply to my questions Dr. Fuhlrott writes that the occipital bone "is in a state of perfect preservation as far as the upper semicircular line, which is a very strong ridge, linear at its extremities, but enlarging towards the middle, where it forms two ridges (bourrelets), united by a linear continuation, which is slightly depressed in the middle."

"Below the left ridge the bone exhibits an obliquely inclined surface, six lines (French) long, and twelve lines wide."

This last must be the surface, the contour of which is shown in Figure 24, A., below 'b'. It is particularly interesting, as it suggests that, notwithstanding the flattened condition of the occiput, the posterior cerebral lobes must have projected considerably beyond the cerebellum, and as it constitutes one among several points of similarity between the Neanderthal cranium and certain Australian skulls.

Such are the two best known forms of human cranium, which have been found in what may be fairly termed a fossil state. Can either be shown to fill up or diminish, to any appreciable extent, the structural interval which exists between Man and the man-like apes? Or, on the other hand, does neither depart more widely from the average structure of the human cranium, than normally formed skulls of men are known to do at the present day?

It is impossible to form any opinion on these questions, without some preliminary acquaintance with the range of variation exhibited by human structure in general—a subject which has been but imperfectly studied, while even of what is known, my limits will necessarily allow me to give only a very imperfect sketch.

The student of anatomy is perfectly well aware that there is not a single organ of the human body the structure of which does not vary, to a greater or less extent, in different individuals. The skeleton varies in the proportions, and even to a certain extent in the connexions, of its constituent bones. The muscles which move the bones vary largely in their attachments. The varieties in the mode of distribution of the arteries are carefully classified, on account of the practical importance of a knowledge of their shiftings to the surgeon. The characters of the brain vary immensely, nothing being less constant than the form and size of the cerebral hemispheres, and the richness of the convolutions upon their surface, while the most changeable structures of all in the human brain, are exactly those on which the unwise attempt has been made to base the distinctive characters of humanity, viz. the posterior cornu of the lateral ventricle, the hippocampus minor, and the degree of projection of the posterior lobe beyond the cerebellum. Finally, as all the world knows, the hair and skin of human beings may present the most extraordinary diversities in colour and in texture.

So far as our present knowledge goes, the majority of the structural varieties to which allusion is here made, are individual. The ape-like arrangement of certain muscles which is occasionally met with* in the white races of mankind, is not known to be more common among Negroes or Australians: ([Footnote] *See an excellent Essay by Mr. Church on the Myology of the Orang, in the 'Natural History Review', for 1861.) nor because the brain of the Hottentot Venus was found to be smoother, to have its convolutions more symmetrically disposed, and to be, so far, more ape-like than that of ordinary Europeans, are we justified in concluding a like condition of the brain to prevail universally among the lower races of mankind, however probable that conclusion may be.

We are, in fact, sadly wanting in information respecting the disposition of the soft and destructible organs of every Race of Mankind but our own; and even of the skeleton, our Museums are lamentably deficient in every part but the cranium. Skulls enough there are, and since the time when Blumenbach and Camper first called attention to the marked and singular differences which they exhibit, skull collecting and skull measuring has been a zealously pursued branch of Natural History, and the results obtained have been arranged and classified by various writers, among whom the late active and able Retzius must always be the first named.

Human skulls have been found to differ from one another, not merely in their absolute size and in the absolute capacity of the brain case, but in the proportions which the diameters of the latter bear to one another; in the relative size of the bones of the face (and more particularly of the jaws and teeth) as compared with those of the skull; in the degree to which the upper jaw (which is of course followed by the lower) is thrown backwards and downwards under the fore-part of the brain case, or forwards and upward in front of and beyond it. They differ further in the relations of the transverse diameter of the face, taken through the cheek bones, to the transverse diameter of the skull; in the more rounded or more gable-like form of the roof of the skull, and in the degree to which the hinder part of the skull is flattened or projects beyond the ridge, into and below which, the muscles of the neck are inserted.

In some skulls the brain case may be said to be 'round,' the extreme length not exceeding the extreme breadth by a greater proportion than 100 to 80, while the difference may be much less.* ([Footnote] *In no normal human skull does the breadth of the brain-case exceed its length.) Men possessing such skulls were termed by Retzius 'brachycephalic,' and the skull of a Calmuck, of which a front and side view (reduced outline copies of which are given in Figure 26) are depicted by Von Baer in his excellent, "Crania selecta," affords a very admirable example of that kind of skull. Other skulls, such as that of a Negro copied in Figure 27 from Mr. Busk's 'Crania typica,' have a very different, greatly elongated form, and may be termed 'oblong.' In this skull the extreme length is to the extreme breadth as 100 to not more than 67, and the transverse diameter of the human skull may fall below even this proportion. People having such skulls were called by Retzius 'dolichocephalic.'

The most cursory glance at the side views of these two skulls will suffice to prove that they differ, in another respect, to a very striking extent. The profile of the face of the Calmuck is almost vertical, the facial bones being thrown downwards and under the forepart of the skull. The profile of the face of the Negro, on the other hand, is singularly inclined, the front part of the jaws projecting far forward beyond the level of the fore part of the skull. In the former case the skull is said to be 'orthognathous' or straight-jawed; in the latter, it is called 'prognathous,' a term which has been rendered, with more force than elegance, by the Saxon equivalent,—'snouty.'

Various methods have been devised in order to express with some accuracy the degree of prognathism or orthognathism of any given skull; most of these methods being essentially modifications of that devised by Peter Camper, in order to attain what he called the 'facial angle.'

But a little consideration will show that any 'facial angle' that has been devised, can be competent to express the structural modifications involved in prognathism and orthognathism, only in a rough and general sort of way. For the lines, the intersection of which forms the facial angle, are drawn through points of the skull, the position of each of which is modified by a number of circumstances, so that the angle obtained is a complex resultant of all these circumstances, and is not the expression of any one definite organic relation of the parts of the skull.

(FIGURE 26.—Side and front views of the round and orthognathous skull of a Calmuck, after Von Baer. One-third the natural size.)

I have arrived at the conviction that no comparison of crania is worth very much, that is not founded upon the establishment of a relatively fixed base line, to which the measurements, in all cases, must be referred. Nor do I think it is a very difficult matter to decide what that base line should be. The parts of the skull, like those of the rest of the animal framework, are developed in succession the base of the skull is formed before its sides and roof; it is converted into cartilage earlier and more completely than the sides and roof: and the cartilaginous base ossifies, and becomes soldered into one piece long before the roof. I conceive then that the base of the skull may be demonstrated developmentally to be its relatively fixed part, the roof and sides being relatively moveable.

(FIGURE 27.—Oblong and prognathous skull of a Negro; side and front views. One-third of the natural size.)

The same truth is exemplified by the study of the modifications which the skull undergoes in ascending from the lower animals up to man.

(FIGURE 28.—Beaver, Lemur and Baboon. Longitudinal and vertical sections of the skulls of a Beaver ('Castor Canadensis'), a Lemur ('L. Catia'), and a Baboon ('Cynocephalus Papio'), 'a b', the basicranial axis; 'b c', the occipital plane; 'i T', the tentorial plane; 'a d', the olfactory plane; 'f e', the basifacial axis; 'c b a', occipital angle; 'T i a', tentorial angle; 'd a b', olfactory angle; 'e f b', cranio-facial angle; 'g h', extreme length of the cavity which lodges the cerebral hemispheres or 'cerebral length.' The length of the basicranial axis as to this length, or, in other words, the proportional length of the line 'g h' to that of 'a b' taken as 100, in the three skulls, is as follows:—Beaver 70 to 100; Lemur 119 to 100; Baboon 144 to 100. In an adult male Gorilla the cerebral length is as 170 to the basicranial axis taken as 100, in the Negro (Figure 29) as 236 to 100. In the Constantinople skull (Figure 29) as 266 to 100. The cranial difference between the highest Ape's skull and the lowest Man's is therefore very strikingly brought out by these measurements. In the diagram of the Baboon's skull the dotted lines 'd1 d2', etc., give the angles of the Lemur's and Beaver's skull, as laid down upon the basicranial axis of the Baboon. The line 'a b' has the same length in each diagram.)

In such a mammal as a Beaver (Figure 28), a line ('a b'.) drawn through the bones, termed basioccipital, basisphenoid, and presphenoid, is very long in proportion to the extreme length of the cavity which contains the cerebral hemispheres ('g h'.). The plane of the occipital foramen ('b c'.) forms a slightly acute angle with this 'basicranial axis,' while the plane of the tentorium ('i T'.) is inclined at rather more than 90 degrees to the 'basicranial axis'; and so is the plane of the perforated plate ('a d'.), by which the filaments of the olfactory nerve leave the skull. Again, a line drawn through the axis of the face, between the bones called ethmoid and vomer—the "basifacial axis" ('f e'.) forms an exceedingly obtuse angle, where, when produced, it cuts the 'basicranial axis.'

If the angle made by the line 'b c'. with 'a b'., be called the 'occipital angle,' and the angle made by the line 'a d'. with 'a b'. be termed the 'olfactory angle,' and that made by 'i T'. with 'a b'. the 'tentorial angle,' then all these, in the mammal in question, are nearly right angles, varying between 80 degrees and 110 degrees. The angle 'e f b'., or that made by the cranial with the facial axis, and which may be termed the 'cranio-facial angle,' is extremely obtuse, amounting, in the case of the Beaver, to at least 150 degrees.

But if a series of sections of mammalian skulls, intermediate between a Rodent and a Man (Figure 28), be examined, it will be found that in the higher crania the basicranial axis becomes shorter relatively to the cerebral length; that the 'olfactory angle' and 'occipital angle' become more obtuse; and that the 'cranio-facial angle' becomes more acute by the bending down, as it were, of the facial axis upon the cranial axis. At the same time, the roof of the cranium becomes more and more arched, to allow of the increasing height of the cerebral hemispheres, which is eminently characteristic of man, as well as of that backward extension, beyond the cerebellum, which reaches its maximum in the South America Monkeys. So that, at last, in the human skull (Figure 29), the cerebral length is between twice and thrice as great as the length of the basicranial axis; the olfactory plane is 20 degrees or 30 degrees on the 'under' side of that axis; the occipital angle, instead of being less than 90 degrees, is as much as 150 degrees or 160 degrees; the cranio-facial angle may be 90 degrees or less, and the vertical height of the skull may have a large proportion to its length.

It will be obvious, from an inspection of the diagrams, that the basicranial axis is, in the ascending series of Mammalia, a relatively fixed line, on which the bones of the sides and roof of the cranial cavity, and of the face, may be said to revolve downwards and forwards or backwards, according to their position. The arc described by any one bone or plane, however, is not by any means always in proportion to the arc described by another.

Now comes the important question, can we discern, between the lowest and the highest forms of the human cranium anything answering, in however slight a degree, to this revolution of the side and roof bones of the skull upon the basicranial axis observed upon so great a scale in the mammalian series? Numerous observations lead me to believe that we must answer this question in the affirmative.

The diagrams in Figure 29 are reduced from very carefully made diagrams of sections of four skulls, two round and orthognathous, two long and prognathous, taken longitudinally and vertically, through the middle. The sectional diagrams have then been superimposed, in such a manner, that the basal axes of the skulls coincide by their anterior ends, and in their direction. The deviations of the rest of the contours (which represent the interior of the skulls only) show the differences of the skulls from one another, when these axes are regarded as relatively fixed lines.

The dark contours are those of an Australian and of a Negro skull: the light contours are those of a Tartar skull, in the Museum of the Royal College of Surgeons; and of a well developed round skull from a cemetery in Constantinople, of uncertain race, in my own possession.

It appears, at once, from these views, that the prognathous skulls, so far as their jaws are concerned, do really differ from the orthognathous in much the same way as, though to a far less degree than, the skulls of the lower mammals differ from those of Man. Furthermore, the plane of the occipital foramen ('b c') forms a somewhat smaller angle with the axis in these particular prognathous skulls than in the orthognathous; and the like may be slightly true of the perforated plate of the ethmoid—though this point is not so clear. But it is singular to remark that, in another respect, the prognathous skulls are less ape-like than the orthognathous, the cerebral cavity projecting decidedly more beyond the anterior end of the axis in the prognathous, than in the orthognathous, skulls.

It will be observed that these diagrams reveal an immense range of variation in the capacity and relative proportion to the cranial axis, of the different regions of the cavity which contains the brain, in the different skulls. Nor is the difference in the extent to which the cerebral overlaps the cerebellar cavity less singular. A round skull (Figure 29, 'Const'.) may have a greater posterior cerebral projection than a long one (Figure 29, 'Negro').

Until human crania have been largely worked out in a manner similar to that here suggested—until it shall be an opprobrium to an ethnological collection to possess a single skull which is not bisected longitudinally—until the angles and measurements here mentioned, together with a number of others of which I cannot speak in this place, are determined, and tabulated with reference to the basicranial axis as unity, for large numbers of skulls of the different races of Mankind, I do not think we shall have any very safe basis for that ethnological craniology which aspires to give the anatomical characters of the crania of the different Races of Mankind.

At present, I believe that the general outlines of what may be safely said upon that subject may be summed up in a very few words. Draw a line on a globe from the Gold Coast in Western Africa to the steppes of Tartary. At the southern and western end of that line there live the most dolichocephalic, prognathous, curly-haired, dark-skinned of men—the true Negroes. At the northern and eastern end of the same line there live the most brachycephalic, orthognathous, straight-haired, yellow-skinned of men—the Tartars and Calmucks. The two ends of this imaginary line are indeed, so to speak, ethnological antipodes. A line drawn at right angles, or nearly so, to this polar line through Europe and Southern Asia to Hindostan, would give us a sort of equator, around which round-headed, oval-headed, and oblong-headed, prognathous and orthognathous, fair and dark races—but none possessing the excessively marked characters of Calmuck or Negro—group themselves.

(FIGURE 29.—Sections of orthognathous (light contour) and prognathous (dark contour) skulls, one-third of the natural size. 'a b', Basicranial axis; 'b c, b1 c1', plane of the occipital foramen; 'd d1', hinder end of the palatine bone; 'e e1', front end of the upper jaw; 'T T1', insertion of the tentorium.)

It is worthy of notice that the regions of the antipodal races are antipodal in climate, the greatest contrast the world affords, perhaps, being that between the damp, hot, steaming, alluvial coast plains of the West Coast of Africa and the arid, elevated steppes and plateaux of Central Asia, bitterly cold in winter, and as far from the sea as any part of the world can be.

From Central Asia eastward to the Pacific Islands and subcontinents on the one hand, and to America on the other, brachycephaly and orthognathism gradually diminish, and are replaced by dolichocephaly and prognathism, less, however, on the American Continent (throughout the whole length of which a rounded type of skull prevails largely, but not exclusively)* than in the Pacific region, where, at length, on the Australian Continent and in the adjacent islands, the oblong skull, the projecting jaws, and the dark skin reappear; with so much departure, in other respects, from the Negro type, that ethnologists assign to these people the special title of 'Negritoes.' ([Footnote] *See Dr. D. Wilson's valuable paper "On the supposed prevalence of one Cranial Type throughout the American aborigines."—'Canadian Journal', vol. ii., 1857.)

The Australian skull is remarkable for its narrowness and for the thickness of its walls, especially in the region of the supraciliary ridge, which is frequently, though not by any means invariably, solid throughout, the frontal sinuses remaining undeveloped. The nasal depression, again, is extremely sudden, so that the brows overhang and give the countenance a particularly lowering, threatening expression. The occipital region of the skull, also, not unfrequently becomes less prominent; so that it not only fails to project beyond a line drawn perpendicular to the hinder extremity of the glabello-occipital line, but even, in some cases, begins to shelve away from it, forwards, almost immediately. In consequence of this circumstance, the parts of the occipital bone which lie above and below the tuberosity make a much more acute angle with one another than is usual, whereby the hinder part of the base of the skull appears obliquely truncated. Many Australian skulls have a considerable height, quite equal to that of the average of any other race, but there are others in which the cranial roof becomes remarkably depressed, the skull, at the same time, elongating so much that, probably, its capacity is not diminished. The majority of skulls possessing these characters, which I have seen, are from the neighbourhood of Port Adelaide in South Australia, and have been used by the natives as water vessels; to which end the face has been knocked away, and a string passed through the vacuity and the occipital foramen, so that the skull was suspended by the greater part of its basis.

(FIGURE 30.—An Australian skull from Western Port, in the Museum of the Royal College of Surgeons, with the contour of the Neanderthal skull. Both reduced to one-third the natural size.)

Figure 30 represents the contour of a skull of this kind from Western Port, with the jaw attached, and of the Neanderthal skull, both reduced to one-third of the size of nature. A small additional amount of flattening and lengthening, with a corresponding increase of the supraciliary ridge, would convert the Australian brain case into a form identical with that of the aberrant fossil.

And now, to return to the fossil skulls, and to the rank which they occupy among, or beyond, these existing varieties of cranial conformation. In the first place, I must remark, that, as Professor Schmerling well observed ('supra', p. 300) in commenting upon the Engis skull, the formation of a safe judgment upon the question is greatly hindered by the absence of the jaws from both the crania, so that there is no means of deciding with certainty, whether they were more or less prognathous than the lower existing races of mankind. And yet, as we have seen, it is more in this respect than any other, that human skulls vary, towards and from, the brutal type—the brain case of an average dolichocephalic European differing far less from that of a Negro, for example, than his jaws do. In the absence of the jaws, then, any judgment on the relations of the fossil skulls to recent Races must be accepted with a certain reservation.

But taking the evidence as it stands, and turning first to the Engis skull, I confess I can find no character in the remains of that cranium which, if it were a recent skull, would give any trustworthy clue as to the Race to which it might appertain. Its contours and measurements agree very well with those of some Australian skulls which I have examined—and especially has it a tendency towards that occipital flattening, to the great extent of which, in some Australian skulls, I have alluded. But all Australian skulls do not present this flattening, and the supraciliary ridge of the Engis skull is quite unlike that of the typical Australians.

On the other hand, its measurements agree equally well with those of some European skulls. And assuredly, there is no mark of degradation about any part of its structure. It is, in fact, a fair average human skull, which might have belonged to a philosopher, or might have contained the thoughtless brains of a savage.

The case of the Neanderthal skull is very different. Under whatever aspect we view this cranium, whether we regard its vertical depression, the enormous thickness of its supraciliary ridges, its sloped occiput, or its long and straight squamosal suture, we meet with ape-like characters, stamping it as the most pithecoid of human crania yet discovered. But Professor Schaaffhausen states ('supra', p. 308), that the cranium, in its present condition, holds 1033.24 cubic centimetres of water, or about 63 cubic inches, and as the entire skull could hardly have held less than an additional 12 cubic inches, its capacity may be estimated at about 75 cubic inches, which is the average capacity given by Morton for Polynesian and Hottentot skulls.

So large a mass of brain as this, would alone suggest that the pithecoid tendencies, indicated by this skull, did not extend deep into the organization; and this conclusion is borne out by the dimensions of the other bones of the skeleton given by Professor Schaaffhausen, which show that the absolute height and relative proportions of the limbs were quite those of an European of middle stature. The bones are indeed stouter, but this and the great development of the muscular ridges noted by Dr. Schaaffhausen, are characters to be expected in savages. The Patagonians, exposed without shelter or protection to a climate possibly not very dissimilar from that of Europe at the time during which the Neanderthal man lived, are remarkable for the stoutness of their limb bones.

(FIGURE 31.—Ancient Danish skull from a tumulus at Borreby: one-third of the natural size. From a camera lucida drawing by Mr. Busk.)

In no sense, then, can the Neanderthal bones be regarded as the remains of a human being intermediate between Men and Apes. At most, they demonstrate the existence of a man whose skull may be said to revert somewhat towards the pithecoid type—just as a Carrier, or a Pouter, or a Tumbler, may sometimes put on the plumage of its primitive stock, the 'Columba livia'. And indeed, though truly the most pithecoid of known human skulls, the Neanderthal cranium is by no means so isolated as it appears to be at first, but forms, in reality, the extreme term of a series leading gradually from it to the highest and best developed of human crania. On the one hand, it is closely approached by the flattened Australian skulls, of which I have spoken, from which other Australian forms lead us gradually up to skulls having very much the type of the Engis cranium. And, on the other hand, it is even more closely affined to the skulls of certain ancient people who inhabited Denmark during the 'stone period,' and were probably either contemporaneous with, or later than, the makers of the 'refuse heaps,' or 'Kjokkenmoddings' of that country.

The correspondence between the longitudinal contour of the Neanderthal skull and that of some of those skulls from the tumuli at Borreby, very accurate drawings of which have been made by Mr. Busk, is very close. The occiput is quite as retreating, the supraciliary ridges are nearly as prominent, and the skull is as low. Furthermore, the Borreby skull resembles the Neanderthal form more closely than any of the Australian skulls do, by the much more rapid retrocession of the forehead. On the other hand, the Borreby skulls are all somewhat broader, in proportion to their length, than the Neanderthal skull, while some attain that proportion of breadth to length (80:100) which constitutes brachycephaly.

In conclusion, I may say, that the fossil remains of Man hitherto discovered do not seem to me to take us appreciably nearer to that lower pithecoid form, by the modification of which he has, probably, become what he is. And considering what is now known of the most ancient races of men; seeing that they fashioned flint axes and flint knives and bone-skewers, of much the same pattern as those fabricated by the lowest savages at the present day, and that we have every reason to believe the habits and modes of living of such people to have remained the same from the time of the Mammoth and the tichorhine Rhinoceros till now, I do not know that this result is other than might be expected.

Where, then, must we look for primaeval Man? Was the oldest 'Homo sapiens' pliocene or miocene, or yet more ancient? In still older strata do the fossilized bones of an Ape more anthropoid, or a Man more pithecoid, than any yet known await the researches of some unborn paleontologist?

Time will show. But, in the meanwhile, if any form of the doctrine of progressive development is correct, we must extend by long epochs the most liberal estimate that has yet been made of the antiquity of Man.

End of On Some Fossil Remains of Man.



ON THE ADVISABLENESS OF IMPROVING NATURAL KNOWLEDGE.*

([Footnote] *A Lay Sermon delivered in St. Martin's Hall on Sunday, January 7th, 1866, and subsequently published in the 'Fortnightly Review'.)

This time two hundred years ago—in the beginning of January, 1666—those of our forefathers who inhabited this great and ancient city, took breath between the shocks of two fearful calamities: one not quite past, although its fury had abated; the other to come.

Within a few yards of the very spot on which we are assembled, so the tradition runs, that painful and deadly malady, the plague, appeared in the latter months of 1664; and, though no new visitor, smote the people of England, and especially of her capital, with a violence unknown before, in the course of the following year. The hand of a master has pictured what happened in those dismal months; and in that truest of fictions, 'The History of the Plague Year', Defoe shows death, with every accompaniment of pain and terror, stalking through the narrow streets of old London, and changing their busy hum into a silence broken only by the wailing of the mourners of fifty thousand dead; by the woful denunciations and mad prayers of fanatics; and by the madder yells of despairing profligates.

But about this time in 1666, the death-rate had sunk to nearly its ordinary amount; a case of plague occurred only here and there, and the richer citizens who had flown from the pest had returned to their dwellings. The remnant of the people began to toil at the accustomed round of duty, or of pleasure; and the stream of city life bid fair to flow back along its old bed, with renewed and uninterrupted vigour.

The newly kindled hope was deceitful. The great plague, indeed, returned no more; but what it had done for the Londoners, the great fire, which broke out in the autumn of 1666, did for London; and, in September of that year, a heap of ashes and the indestructible energy of the people were all that remained of the glory of five-sixths of the city within the walls.

Our forefathers had their own ways of accounting for each of these calamities. They submitted to the plague in humility and in penitence, for they believed it to be the judgment of God. But, towards the fire they were furiously indignant, interpreting it as the effect of the malice of man,—as the work of the Republicans, or of the Papists, according as their prepossessions ran in favour of loyalty or of Puritanism.

It would, I fancy, have fared but ill with one who, standing where I now stand, in what was then a thickly peopled and fashionable part of London, should have broached to our ancestors the doctrine which I now propound to you—that all their hypotheses were alike wrong; that the plague was no more, in their sense, Divine judgment, than the fire was the work of any political, or of any religious, sect; but that they were themselves the authors of both plague and fire, and that they must look to themselves to prevent the recurrence of calamities, to all appearance so peculiarly beyond the reach of human control—so evidently the result of the wrath of God, or of the craft and subtlety of an enemy.

And one may picture to one's self how harmoniously the holy cursing of the Puritan of that day would have chimed in with the unholy cursing and the crackling wit of the Rochesters and Sedleys, and with the revilings of the political fanatics, if my imaginary plain dealer had gone on to say that, if the return of such misfortunes were ever rendered impossible, it would not be in virtue of the victory of the faith of Laud, or of that of Milton; and, as little, by the triumph of republicanism, as by that of monarchy. But that the one thing needful for compassing this end was, that the people of England should second the effort of an insignificant corporation, the establishment of which, a few years before the epoch of the great plague and the great fire, had been as little noticed, as they were conspicuous.

Some twenty years before the outbreak of the plague a few calm and thoughtful students banded themselves together for the purpose, as they phrased it, of "improving natural knowledge." The ends they proposed to attain cannot be stated more clearly than in the words of one of the founders of the organization:—

"Our business was (precluding matters of theology and state affairs) to discourse and consider of philosophical enquiries, and such as related thereunto:—as Physick, Anatomy, Geometry, Astronomy, Navigation, Staticks, Magneticks, Chymicks, Mechanicks, and Natural Experiments; with the state of these studies and their cultivation at home and abroad. We then discoursed of the circulation of the blood, the valves in the veins, the venae lacteae, the lymphatic vessels, the Copernican hypothesis, the nature of comets and new stars, the satellites of Jupiter, the oval shape (as it then appeared) of Saturn, the spots on the sun and its turning on its own axis, the inequalities and selenography of the moon, the several phases of Venus and Mercury, the improvement of telescopes and grinding of glasses for that purpose, the weight of air, the possibility or impossibility of vacuities and nature's abhorrence thereof, the Torricellian experiment in quicksilver, the descent of heavy bodies and the degree of acceleration therein, with divers other things of like nature, some of which were then but new discoveries, and others not so generally known and embraced as now they are; with other things appertaining to what hath been called the New Philosophy, which from the times of Galileo at Florence, and Sir Francis Bacon (Lord Verulam) in England, hath been much cultivated in Italy, France, Germany, and other parts abroad, as well as with us in England."

The learned Dr. Wallis, writing in 1696, narrates in these words, what happened half a century before, or about 1645. The associates met at Oxford, in the rooms of Dr. Wilkins, who was destined to become a bishop; and subsequently coming together in London, they attracted the notice of the king. And it is a strange evidence of the taste for knowledge which the most obviously worthless of the Stuarts shared with his father and grandfather, that Charles the Second was not content with saying witty things about his philosophers, but did wise things with regard to them. For he not only bestowed upon them such attention as he could spare from his poodles and his mistresses, but being in his usual state of impecuniosity, begged for them of the Duke of Ormond; and, that step being without effect, gave them Chelsea College, a charter, and a mace: crowning his favours in the best way they could be crowned, by burdening them no further with royal patronage or state interference.

Thus it was that the half-dozen young men, studious of the "New Philosophy," who met in one another's lodgings in Oxford or in London, in the middle of the seventeenth century, grew in numerical and in real strength, until, in the latter part, the "Royal Society for the improvement of Natural Knowledge" had already become famous, and had acquired a claim upon the veneration of Englishmen, which it has ever since retained, as the principal focus of scientific activity in our islands, and the chief champion of the cause it was formed to support.

It was by the aid of the Royal Society that Newton published his 'Principia'. If all the books in the world, except the Philosophical Transactions, were destroyed, it is safe to say that the foundations of physical science would remain unshaken, and that the vast intellectual progress of the last two centuries would be largely, though incompletely, recorded. Nor have any signs of halting or of decrepitude manifested themselves in our own times. As in Dr. Wallis's days, so in these, "our business is, precluding theology and state affairs, to discourse and consider of philosophical enquiries." But our "Mathematick" is one which Newton would have to go to school to learn; our "Staticks, Mechanicks, Magneticks, Chymicks, and Natural Experiments" constitute a mass of physical and chemical knowledge, a glimpse at which would compensate Galileo for the doings of a score of inquisitorial cardinals; our "Physick" and "Anatomy" have embraced such infinite varieties of being, have laid open such new worlds in time and space, have grappled, not unsuccessfully, with such complex problems, that the eyes of Vesalius and of Harvey might be dazzled by the sight of the tree that has grown out of their grain of mustard seed.

The fact is perhaps rather too much, than too little, forced upon one's notice, nowadays, that all this marvellous intellectual growth has a no less wonderful expression in practical life; and that, in this respect, if in no other, the movement symbolized by the progress of the Royal Society stands without a parallel in the history of mankind.

A series of volumes as bulky as the 'Transactions of the Royal Society' might possibly be filled with the subtle speculations of the Schoolmen; not improbably, the obtaining a mastery over the products of mediaeval thought might necessitate an even greater expenditure of time and of energy than the acquirement of the "New Philosophy"; but though such work engrossed the best intellects of Europe for a longer time than has elapsed since the great fire, its effects were "writ in water," so far as our social state is concerned.

On the other hand, if the noble first President of the Royal Society could revisit the upper air and once more gladden his eyes with a sight of the familiar mace, he would find himself in the midst of a material civilization more different from that of his day, than that of the seventeenth was from that of the first century. And if Lord Brouncker's native sagacity had not deserted his ghost, he would need no long reflection to discover that all these great ships, these railways, these telegraphs, these factories, these printing-presses, without which the whole fabric of modern English society would collapse into a mass of stagnant and starving pauperism,—that all these pillars of our State are but the ripples, and the bubbles upon the surface of that great spiritual stream, the springs of which, only, he and his fellows were privileged to see; and seeing, to recognise as that which it behoved them above all things to keep pure and undefiled.

It may not be too great a flight of imagination to conceive our noble 'revenant' not forgetful of the great troubles of his own day, and anxious to know how often London had been burned down since his time, and how often the plague had carried off its thousands. He would have to learn that, although London contains tenfold the inflammable matter that it did in 1666; though, not content with filling our rooms with woodwork and light draperies, we must needs lead inflammable and explosive gases into every corner of our streets and houses, we never allow even a street to burn down. And if he asked how this had come about, we should have to explain that the improvement of natural knowledge has furnished us with dozens of machines for throwing water upon fires, any one of which would have furnished the ingenious Mr. Hooke, the first "curator and experimenter" of the Royal Society, with ample materials for discourse before half a dozen meetings of that body; and that, to say truth, except for the progress of natural knowledge, we should not have been able to make even the tools by which these machines are constructed. And, further, it would be necessary to add, that although severe fires sometimes occur and inflict great damage, the loss is very generally compensated by societies, the operations of which have been rendered possible only by the progress of natural knowledge in the direction of mathematics, and the accumulation of wealth in virtue of other natural knowledge.

But the plague? My Lord Brouncker's observation would not, I fear, lead him to think that Englishmen of the nineteenth century are purer in life, or more fervent in religious faith, than the generation which could produce a Boyle, an Evelyn, and a Milton. He might find the mud of society at the bottom, instead of at the top, but I fear that the sum total would be a deserving of swift judgment as at the time of the Restoration. And it would be our duty to explain once more, and this time not without shame, that we have no reason to believe that it is the improvement of our faith, nor that of our morals, which keeps the plague from our city; but, again, that it is the improvement of our natural knowledge.

We have learned that pestilences will only take up their abode among those who have prepared unswept and ungarnished residences for them. Their cities must have narrow, unwatered streets, foul with accumulated garbage. Their houses must be ill-drained, ill-lighted, ill-ventilated. Their subjects must be ill-washed, ill-fed, ill-clothed. The London of 1665 was such a city. The cities of the East, where plague has an enduring dwelling, are such cities. We, in later times, have learned somewhat of Nature, and partly obey her. Because of this partial improvement of our natural knowledge and of that fractional obedience, we have no plague; because that knowledge is still very imperfect and that obedience yet incomplete, typhus is our companion and cholera our visitor. But it is not presumptuous to express the belief that, when our knowledge is more complete and our obedience the expression of our knowledge, London will count her centuries of freedom from typhus and cholera, as she now gratefully reckons her two hundred years of ignorance of that plague which swooped upon her thrice in the first half of the seventeenth century.

Surely, there is nothing in these explanations which is not fully borne out by the facts? Surely, the principles involved in them are now admitted among the fixed beliefs of all thinking men? Surely, it is true that our countrymen are less subject to fire, famine, pestilence, and all the evils which result from a want of command over and due anticipation of the course of Nature, than were the countrymen of Milton; and health, wealth, and well-being are more abundant with us than with them? But no less certainly is the difference due to the improvement of our knowledge of Nature, and the extent to which that improved knowledge has been incorporated with the household words of men, and has supplied the springs of their daily actions.

Granting for a moment, then, the truth of that which the depreciators of natural knowledge are so fond of urging, that its improvement can only add to the resources of our material civilization; admitting it to be possible that the founders of the Royal Society themselves looked for no other reward than this, I cannot confess that I was guilty of exaggeration when I hinted, that to him who had the gift of distinguishing between prominent events and important events, the origin of a combined effort on the part of mankind to improve natural knowledge might have loomed larger than the Plague and have outshone the glare of the Fire; as a something fraught with a wealth of beneficence to mankind, in comparison with which the damage done by those ghastly evils would shrink into insignificance.

It is very certain that for every victim slain by the plague, hundreds of mankind exist and find a fair share of happiness in the world by the aid of the spinning jenny. And the great fire, at its worst, could not have burned the supply of coal, the daily working of which, in the bowels of the earth, made possible by the steam pump, gives rise to an amount of wealth to which the millions lost in old London are but as an old song.

But spinning jenny and steam pump are, after all, but toys, possessing an accidental value; and natural knowledge creates multitudes of more subtle contrivances, the praises of which do not happen to be sung because they are not directly convertible into instruments of creating wealth. When I contemplate natural knowledge squandering such gifts among men, the only appropriate comparison I can find for her is, to liken her to such a peasant woman as one sees in the Alps, striding ever upward, heavily burdened, and with mind bent only on her home; but yet, without effort and without thought, knitting for her children. Now stockings are good and comfortable things, and the children will undoubtedly be much the better for them; but surely it would be short-sighted, to say the least of it, to depreciate this toiling mother as a mere stocking-machine—a mere provider of physical comforts?

However, there are blind leaders of the blind, and not a few of them, who take this view of natural knowledge, and can see nothing in the bountiful mother of humanity but a sort of comfort-grinding machine. According to them, the improvement of natural knowledge always has been, and always must be, synonymous with no more than the improvement of the material resources and the increase of the gratification of men.

Natural knowledge is, in their eyes, no real mother of mankind, bringing them up with kindness, and if need be, with sternness, in the way they should go, and instructing them in all things needful for their welfare; but a sort of fairy godmother, ready to furnish her pets with shoes of swiftness, swords of sharpness, and omnipotent Aladdin's lamps, so that they may have telegraphs to Saturn, and see the other side of the moon, and thank God they are better than their benighted ancestors.

If this talk were true, I, for one, should not greatly care to toil in the service of natural knowledge. I think I would just as soon be quietly chipping my own flint axe, after the manner of my forefathers a few thousand years back, as be troubled with the endless malady of thought which now infests us all, for such reward. But I venture to say that such views are contrary alike to reason and to fact. Those who discourse in such fashion seem to me to be so intent upon trying to see what is above Nature, or what is behind her, that they are blind to what stares them in the face, in her.

I should not venture to speak thus strongly if my justification were not to be found in the simplest and most obvious facts,—if it needed more than an appeal to the most notorious truths to justify my assertion, that the improvement of natural knowledge, whatever direction it has taken, and however low the aims of those who may have commenced it—has not only conferred practical benefits on men, but, in so doing, has effected a revolution in their conceptions of the universe and of themselves, and has profoundly altered their modes of thinking and their views of right and wrong. I say that natural knowledge, seeking to satisfy natural wants, has found the ideas which can alone still spiritual cravings. I way that natural knowledge, in desiring to ascertain the laws of comfort, has been driven to discover those of conduct, and to lay the foundations of a new morality.

Let us take these points separately; and, first, what great ideas has natural knowledge introduced into men's minds?

I cannot but think that the foundations of all natural knowledge were laid when the reason of man first came face to face with the facts of Nature; when the savage first learned that the fingers of one hand are fewer than those of both; that it is shorter to cross a stream than to head it; that a stone stops where it is unless it be moved, and that it drops from the hand which lets it go; that light and heat come and go with the sun; that sticks burn away to a fire; that plants and animals grow and die; that if he struck his fellow-savage a blow he would make him angry, and perhaps get a blow in return, while if he offered him a fruit he would please him, and perhaps receive a fish in exchange. When men had acquired this much knowledge, the outlines, rude though they were, of mathematics, of physics, of chemistry, of biology, of moral, economical, and political science, were sketched. Nor did the germ of religion fail when science began to bud. Listen to words which though new, are yet three thousand years old:—

"...When in heaven the stars about the moon Look beautiful, when all the winds are laid, And every height comes out, and jutting peak And valley, and the immeasurable heavens Break open to their highest, and all the stars Shine, and the shepherd gladdens in his heart."*

([Footnote] *Need it be said that this is Tennyson's English for Homer's Greek?)

If the half-savage Greek could share our feelings thus far, it is irrational to doubt that he went further, to find, as we do, that upon that brief gladness there follows a certain sorrow,—the little light of awakened human intelligence shines so mere a spark amidst the abyss of the unknown and unknowable; seems so insufficient to do more than illuminate the imperfections that cannot be remedied, the aspirations that cannot be realized, of man's own nature. But in this sadness, this consciousness of the limitation of man, this sense of an open secret which he cannot penetrate, lies the essence of all religion; and the attempt to embody it in the forms furnished by the intellect is the origin of the higher theologies.

Thus it seems impossible to imagine but that the foundations of all knowledge—secular or sacred—were laid when intelligence dawned, though the superstructure remained for long ages so slight and feeble as to be compatible with the existence of almost any general view respecting the mode of governance of the universe. No doubt, from the first, there were certain phenomena which, to the rudest mind, presented a constancy of occurrence, and suggested that a fixed order ruled, at any rate, among them. I doubt if the grossest of Fetish worshippers ever imagined that a stone must have a god within it to make it fall, or that a fruit had a god within it to make it taste sweet. With regard to such matters as these, it is hardly questionable that mankind from the first took strictly positive and scientific views.

But, with respect to all the less familiar occurrences which present themselves, uncultured man, no doubt, has always taken himself as the standard of comparison, as the centre and measure of the world; nor could he well avoid doing so. And finding that his apparently uncaused will has a powerful effect in giving rise to many occurrences, he naturally enough ascribed other and greater events to other and greater volitions, and came to look upon the world and all that therein is, as the product of the volitions of persons like himself, but stronger, and capable of being appeased or angered, as he himself might be soothed or irritated. Through such conceptions of the plan and working of the universe all mankind have passed, or are passing. And we may now consider, what has been the effect of the improvement of natural knowledge on the views of men who have reached this stage, and who have begun to cultivate natural knowledge with no desire but that of "increasing God's honour and bettering man's estate."

For example, what could seem wiser, from a mere material point of view, more innocent, from a theological one, to an ancient people, than that they should learn the exact succession of the seasons, as warnings for their husbandmen; or the position of the stars, as guides to their rude navigators? But what has grown out of this search for natural knowledge of so merely useful a character? You all know the reply. Astronomy,—which of all sciences has filled men's minds with general ideas of a character most foreign to their daily experience, and has, more than any other, rendered it impossible for them to accept the beliefs of their fathers. Astronomy,—which tells them that this so vast and seemingly solid earth is but an atom among atoms, whirling, no man knows whither, through illimitable space; which demonstrates that what we call the peaceful heaven above us, is but that space, filled by an infinitely subtle matter whose particles are seething and surging, like the waves of an angry sea; which opens up to us infinite regions where nothing is known, or ever seems to have been known, but matter and force, operating according to rigid rules; which leads us to contemplate phenomena the very nature of which demonstrates that they must have had a beginning, and that they must have an end, but the very nature of which also proves that the beginning was, to our conceptions of time, infinitely remote, and that the end is as immeasurably distant.

But it is not alone those who pursue astronomy who ask for bread and receive ideas. What more harmless than the attempt to lift and distribute water by pumping it; what more absolutely and grossly utilitarian? But out of pumps grew the discussions about Nature's abhorrence of a vacuum; and then it was discovered that Nature does not abhor a vacuum, but that air has weight; and that notion paved the way for the doctrine that all matter has weight, and that the force which produces weight is co-extensive with the universe,—in short, to the theory of universal gravitation and endless force. While learning how to handle gases led to the discovery of oxygen, and to modern chemistry, and to the notion of the indestructibility of matter.

Again, what simpler, or more absolutely practical, than the attempt to keep the axle of a wheel from heating when the wheel turns round very fast? How useful for carters and gig drivers to know something about this; and how good were it, if any ingenious person would find out the cause of such phenomena, and thence educe a general remedy for them. Such an ingenious person was Count Rumford; and he and his successors have landed us in the theory of the persistence, or indestructibility, of force. And in the infinitely minute, as in the infinitely great, the seekers after natural knowledge, of the kinds called physical and chemical, have everywhere found a definite order and succession of events which seem never to be infringed.

And how has it fared with "Physick" and Anatomy? Have the anatomist, the physiologist, or the physician, whose business it has been to devote themselves assiduously to that eminently practical and direct end, the alleviation of the sufferings of mankind,—have they been able to confine their vision more absolutely to the strictly useful? I fear they are worst offenders of all. For if the astronomer has set before us the infinite magnitude of space, and the practical eternity of the duration of the universe; if the physical and chemical philosophers have demonstrated the infinite minuteness of its constituent parts, and the practical eternity of matter and of force; and if both have alike proclaimed the universality of a definite and predicable order and succession of events, the workers in biology have not only accepted all these, but have added more startling theses of their own. For, as the astronomers discover in the earth no centre of the universe, but an eccentric speck, so the naturalists find man to be no centre of the living world, but one amidst endless modifications of life; and as the astronomer observes the mark of practically endless time set upon the arrangements of the solar system so the student of life finds the records of ancient forms of existence peopling the world for ages, which, in relation to human experience, are infinite.

Furthermore, the physiologist finds life to be as dependent for its manifestation on particular molecular arrangements as any physical or chemical phenomenon; and, whenever he extends his researches, fixed order and unchanging causation reveal themselves, as plainly as in the rest of Nature.

Nor can I find that any other fate has awaited the germ of Religion. Arising, like all other kinds of knowledge, and out of the action and interaction of man's mind, with that which is not man's mind, it has taken the intellectual coverings of Fetishism or Polytheism; of Theism or Atheism; of Superstition or Rationalism. With these, and their relative merits and demerits, I have nothing to do; but this it is needful for my purpose to say, that if the religion of the present differs from that of the past, it is because the theology of the present has become more scientific than that of the past; because it has not only renounced idols of wood and idols of stone, but begins to see the necessity of breaking in pieces the idols built up of books and traditions and fine-spun ecclesiastical cobwebs: and of cherishing the noblest and most human of man's emotions, by worship "for the most part of the silent sort" at the altar of the Unknown and Unknowable.

Such are a few of the new conceptions implanted in our minds by the improvement of natural knowledge. Men have acquired the ideas of the practically infinite extent of the universe and of its practical eternity; they are familiar with the conception that our earth is but an infinitesimal fragment of that part of the universe which can be seen; and that, nevertheless, its duration is, as compared with our standards of time, infinite. They have further acquired the idea that man is but one of innumerable forms of life now existing in the globe, and that the present existences are but the last of an immeasurable series of predecessors. Moreover, every step they have made in natural knowledge has tended to extend and rivet in their minds the conception of a definite order of the universe—which is embodied in what are called, by an unhappy metaphor, the laws of Nature—and to narrow the range and loosen the force of men's belief in spontaneity, or in changes other than such as arise out of that definite order itself.

Whether these ideas are well or ill founded is not the question. No one can deny that they exist, and have been the inevitable outgrowth of the improvement of natural knowledge. And if so, it cannot be doubted that they are changing the form of men's most cherished and most important convictions.

And as regards the second point—the extent to which the improvement of natural knowledge has remodelled and altered what may be termed the intellectual ethics of men,—what are among the moral convictions most fondly held by barbarous and semi-barbarous people.

They are the convictions that authority is the soundest basis of belief; that merit attaches to a readiness to believe; that the doubting disposition is a bad one, and scepticism a sin; that when good authority has pronounced what is to be believed, and faith has accepted it, reason has no further duty. There are many excellent persons who yet hold by these principles, and it is not my present business, or intention, to discuss their views. All I wish to bring clearly before your minds is the unquestionable fact, that the improvement of natural knowledge is effected by methods which directly give the lie to all these convictions, and assume the exact reverse of each to be true.

Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse