p-books.com
Lectures and Essays
by T.H. Huxley
Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse

I have taken this plant and shown you that this is the result of the ratio of the increase, the necessary result of the arrival of a time coming for every species when exactly as many members must be destroyed as are born; that is the inevitable ultimate result of the rate of production. Now, what is the result of all this? I have said that there are forty-nine struggling against every one; and it amounts to this, that the smallest possible start given to any one seed may give it an advantage which will enable it to get ahead of all the others; anything that will enable any one of these seeds to germinate six hours before any of the others will, other things being alike, enable it to choke them out altogether. I have shown you that there is no particular in which plants will not vary from each other; it is quite possible that one of our imaginary plants may vary in such a character as the thickness of the integument of its seeds; it might happen that one of the plants might produce seeds having a thinner integument, and that would enable the seeds of that plant to germinate a little quicker than those of any of the others, and those seeds would most inevitably extinguish the forty-nine times as many that were struggling with them.

I have put it in this way, but you see the practical result of the process is the same as if some person had nurtured the one and destroyed the other seeds. It does not matter how the variation is produced, so long as it is once allowed to occur. The variation in the plant once fairly started tends to become hereditary and reproduce itself; the seeds would spread themselves in the same way and take part in the struggle with the forty-nine hundred, or forty-nine thousand, with which they might be exposed. Thus, by degrees, this variety, with some slight organic change or modification, must spread itself over the whole surface of the habitable globe, and extirpate or replace the other kinds. That is what is meant by NATURAL SELECTION; that is the kind of argument by which it is perfectly demonstrable that the conditions of existence may play exactly the same part for natural varieties as man does for domesticated varieties. No one doubts at all that particular circumstances may be more favourable for one plant and less so for another, and the moment you admit that, you admit the selective power of nature. Now, although I have been putting a hypothetical case, you must not suppose that I have been reasoning hypothetically. There are plenty of direct experiments which bear out what we may call the theory of natural selection; there is extremely good authority for the statement that if you take the seed of mixed varieties of wheat and sow it, collecting the seed next year and sowing it again, at length you will find that out of all your varieties only two or three have lived, or perhaps even only one. There were one or two varieties which were best fitted to get on, and they have killed out the other kinds in just the same way and with just the same certainty as if you had taken the trouble to remove them. As I have already said, the operation of nature is exactly the same as the artificial operation of man.

But if this be true of that simple case, which I put before you, where there is nothing but the rivalry of one member of a species with others, what must be the operation of selective conditions, when you recollect as a matter of fact, that for every species of animal or plant there are fifty or a hundred species which might all, more or less, be comprehended in the same climate, food, and station;—that every plant has multitudinous animals which prey upon it, and which are its direct opponents; and that these have other animals preying upon them,—that every plant has its indirect helpers in the birds that scatter abroad its seed, and the animals that manure it with their dung;—I say, when these things are considered, it seems impossible that any variation which may arise in a species in nature should not tend in some way or other either to be a little better or worse than the previous stock; if it is a little better it will have an advantage over and tend to extirpate the latter in this crush and struggle; and if it is a little worse it will itself be extirpated.

I know nothing that more appropriately expresses this, than the phrase, "the struggle for existence"; because it brings before your minds, in a vivid sort of way, some of the simplest possible circumstances connected with it. When a struggle is intense there must be some who are sure to be trodden down, crushed, and overpowered by others; and there will be some who just manage to get through only by the help of the slightest accident. I recollect reading an account of the famous retreat of the French troops, under Napoleon, from Moscow. Worn out, tired, and dejected, they at length came to a great river over which there was but one bridge for the passage of the vast army. Disorganised and demoralised as that army was, the struggle must certainly have been a terrible one—every one heeding only himself, and crushing through the ranks and treading down his fellows. The writer of the narrative, who was himself one of those who were fortunate enough to succeed in getting over, and not among the thousands who were left behind or forced into the river, ascribed his escape to the fact that he saw striding onward through the mass a great strong fellow,—one of the French Cuirassiers, who had on a large blue cloak—and he had enough presence of mind to catch and retain a hold of this strong man's cloak. He says, "I caught hold of his cloak, and although he swore at me and cut at and struck me by turns, and at last, when he found he could not shake me off, fell to entreating me to leave go or I should prevent him from escaping, besides not assisting myself, I still kept tight hold of him, and would not quit my grasp until he had at last dragged me through." Here you see was a case of selective saving—if we may so term it—depending for its success on the strength of the cloth of the Cuirassier's cloak. It is the same in nature; every species has its bridge of Beresina; it has to fight its way through and struggle with other species; and when well nigh overpowered, it may be that the smallest chance, something in its colour, perhaps—the minutest circumstance—will turn the scale one way or the other.

Suppose that by a variation of the black race it had produced the white man at any time—you know that the Negroes are said to believe this to have been the case, and to imagine that Cain was the first white man, and that we are his descendants—suppose that this had ever happened, and that the first residence of this human being was on the West Coast of Africa. There is no great structural difference between the white man and the Negro, and yet there is something so singularly different in the constitution of the two, that the malarias of that country, which do not hurt the black at all, cut off and destroy the white. Then you see there would have been a selective operation performed; if the white man had risen in that way, he would have been selected out and removed by means of the malaria. Now there really is a very curious case of selection of this sort among pigs, and it is a case of selection of colour too. In the woods of Florida there are a great many pigs, and it is a very curious thing that they are all black, every one of them. Professor Wyman was there some years ago, and on noticing no pigs but these black ones, he asked some of the people how it was that they had no white pigs, and the reply was that in the woods of Florida there was a root which they called the Paint Root, and that if the white pigs were to eat any of it, it had the effect of making their hoofs crack, and they died, but if the black pigs eat any of it, it did not hurt them at all. Here was a very simple case of natural selection. A skilful breeder could not more carefully develope the black breed of pigs, and weed out all the white pigs, than the Paint Root does.

To show you how remarkably indirect may be such natural selective agencies as I have referred to, I will conclude by noticing a case mentioned by Mr. Darwin, and which is certainly one of the most curious of its kind. It is that of the Humble Bee. It has been noticed that there are a great many more humble bees in the neighbourhood of towns, than out in the open country; and the explanation of the matter is this: the humble bees build nests, in which they store their honey and deposit the larvae and eggs. The field mice are amazingly fond of the honey and larvae; therefore, wherever there are plenty of field mice, as in the country, the humble bees are kept down; but in the neighbourhood of towns, the number of cats which prowl about the fields eat up the field mice, and of course the more mice they eat up the less there are to prey upon the larvae of the bees—the cats are therefore the INDIRECT HELPERS of the bees!* Coming back a step farther we may say that the old maids are also indirect friends of the humble bees, and indirect enemies of the field mice, as they keep the cats which eat up the latter! This is an illustration somewhat beneath the dignity of the subject, perhaps, but it occurs to me in passing, and with it I will conclude this lecture. ([Footnote] *The humble bees, on the other hand, are direct helpers of some plants, such as the heartsease and red clover, which are fertilized by the visits of the bees; and they are indirect helpers of the numerous insects which are more or less completely supported by the heartsease and red clover.)

End of The Conditions of Existence.



A CRITICAL EXAMINATION OF THE POSITION OF MR. DARWIN'S WORK, "ON THE ORIGIN OF SPECIES," IN RELATION TO THE COMPLETE THEORY OF THE CAUSES OF THE PHENOMENA OF ORGANIC NATURE.

In the preceding five lectures I have endeavoured to give you an account of those facts, and of those reasonings from facts, which form the data upon which all theories regarding the causes of the phenomena of organic nature must be based. And, although I have had frequent occasion to quote Mr. Darwin—as all persons hereafter, in speaking upon these subjects, will have occasion to quote his famous book on the "Origin of Species,"—you must yet remember that, wherever I have quoted him, it has not been upon theoretical points, or for statements in any way connected with his particular speculations, but on matters of fact, brought forward by himself, or collected by himself, and which appear incidentally in his book. If a man WILL make a book, professing to discuss a single question, an encyclopaedia, I cannot help it.

Now, having had an opportunity of considering in this sort of way the different statements bearing upon all theories whatsoever, I have to lay before you, as fairly as I can, what is Mr. Darwin's view of the matter and what position his theories hold, when judged by the principles which I have previously laid down, as deciding our judgments upon all theories and hypotheses.

I have already stated to you that the inquiry respecting the causes of the phenomena of organic nature resolves itself into two problems—the first being the question of the origination of living or organic beings; and the second being the totally distinct problem of the modification and perpetuation of organic beings when they have already come into existence. The first question Mr. Darwin does not touch; he does not deal with it at all; but he says—given the origin of organic matter—supposing its creation to have already taken place, my object is to show in consequence of what laws and what demonstrable properties of organic matter, and of its environments, such states of organic nature as those with which we are acquainted must have come about. This, you will observe, is a perfectly legitimate proposition; every person has a right to define the limits of the inquiry which he sets before himself; and yet it is a most singular thing that in all the multifarious, and, not unfrequently, ignorant attacks which have been made upon the 'Origin of Species', there is nothing which has been more speciously criticised than this particular limitation. If people have nothing else to urge against the book, they say—"Well, after all, you see, Mr. Darwin's explanation of the 'Origin of Species' is not good for much, because, in the long run, he admits that he does not know how organic matter began to exist. But if you admit any special creation for the first particle of organic matter you may just as well admit it for all the rest; five hundred or five thousand distinct creations are just as intelligible, and just as little difficult to understand, as one." The answer to these cavils is two-fold. In the first place, all human inquiry must stop somewhere; all our knowledge and all our investigation cannot take us beyond the limits set by the finite and restricted character of our faculties, or destroy the endless unknown, which accompanies, like its shadow, the endless procession of phenomena. So far as I can venture to offer an opinion on such a matter, the purpose of our being in existence, the highest object that human beings can set before themselves, is not the pursuit of any such chimera as the annihilation of the unknown; but it is simply the unwearied endeavour to remove its boundaries a little further from our little sphere of action.

I wonder if any historian would for a moment admit the objection, that it is preposterous to trouble ourselves about the history of the Roman Empire, because we do not know anything positive about the origin and first building of the city of Rome! Would it be a fair objection to urge, respecting the sublime discoveries of a Newton, or a Kepler, those great philosophers, whose discoveries have been of the profoundest benefit and service to all men,—to say to them—"After all that you have told us as to how the planets revolve, and how they are maintained in their orbits, you cannot tell us what is the cause of the origin of the sun, moon, and stars. So what is the use of what you have done?" Yet these objections would not be one whit more preposterous than the objections which have been made to the 'Origin of Species.' Mr. Darwin, then, had a perfect right to limit his inquiry as he pleased, and the only question for us—the inquiry being so limited—is to ascertain whether the method of his inquiry is sound or unsound; whether he has obeyed the canons which must guide and govern all investigation, or whether he has broken them; and it was because our inquiry this evening is essentially limited to that question, that I spent a good deal of time in a former lecture (which, perhaps, some of you thought might have been better employed), in endeavouring to illustrate the method and nature of scientific inquiry in general. We shall now have to put in practice the principles that I then laid down.

I stated to you in substance, if not in words, that wherever there are complex masses of phenomena to be inquired into, whether they be phenomena of the affairs of daily life, or whether they belong to the more abstruse and difficult problems laid before the philosopher, our course of proceeding in unravelling that complex chain of phenomena with a view to get at its cause, is always the same; in all cases we must invent an hypothesis; we must place before ourselves some more or less likely supposition respecting that cause; and then, having assumed an hypothesis, having supposed cause for the phenomena in question, we must endeavour, on the one hand, to demonstrate our hypothesis, or, on the other, to upset and reject it altogether, by testing it in three ways. We must, in the first place, be prepared to prove that the supposed causes of the phenomena exist in nature; that they are what the logicians call 'vera causae'—true causes;—in the next place, we should be prepared to show that the assumed causes of the phenomena are competent to produce such phenomena as those which we wish to explain by them; and in the last place, we ought to be able to show that no other known causes are competent to produce those phenomena. If we can succeed in satisfying these three conditions we shall have demonstrated our hypothesis; or rather I ought to say we shall have proved it as far as certainty is possible for us; for, after all, there is no one of our surest convictions which may not be upset, or at any rate modified by a further accession of knowledge. It was because it satisfied these conditions that we accepted the hypothesis as to the disappearance of the tea-pot and spoons in the case I supposed in a previous lecture; we found that our hypothesis on that subject was tenable and valid, because the supposed cause existed in nature, because it was competent to account for the phenomena, and because no other known cause was competent to account for them; and it is upon similar grounds that any hypothesis you choose to name is accepted in science as tenable and valid.

What is Mr. Darwin's hypothesis? As I apprehend it—for I have put it into a shape more convenient for common purposes than I could find 'verbatim' in his book—as I apprehend it, I say, it is, that all the phenomena of organic nature, past and present, result from, or are caused by, the inter-action of those properties of organic matter, which we have called ATAVISM and VARIABILITY, with the CONDITIONS OF EXISTENCE; or, in other words,—given the existence of organic matter, its tendency to transmit its properties, and its tendency occasionally to vary; and, lastly, given the conditions of existence by which organic matter is surrounded—that these put together are the causes of the Present and of the Past conditions of ORGANIC NATURE.

Such is the hypothesis as I understand it. Now let us see how it will stand the various tests which I laid down just now. In the first place, do these supposed causes of the phenomena exist in nature? Is it the fact that in nature these properties of organic matter—atavism and variability—and those phenomena which we have called the conditions of existence,—is it true that they exist? Well, of course, if they do not exist, all that I have told you in the last three or four lectures must be incorrect, because I have been attempting to prove that they do exist, and I take it that there is abundant evidence that they do exist; so far, therefore, the hypothesis does not break down.

But in the next place comes a much more difficult inquiry:—Are the causes indicated competent to give rise to the phenomena of organic nature? I suspect that this is indubitable to a certain extent. It is demonstrable, I think, as I have endeavoured to show you, that they are perfectly competent to give rise to all the phenomena which are exhibited by RACES in nature. Furthermore, I believe that they are quite competent to account for all that we may call purely structural phenomena which are exhibited by SPECIES in nature. On that point also I have already enlarged somewhat. Again, I think that the causes assumed are competent to account for most of the physiological characteristics of species, and I not only think that they are competent to account for them, but I think that they account for many things which otherwise remain wholly unaccountable and inexplicable, and I may say incomprehensible. For a full exposition of the grounds on which this conviction is based, I must refer you to Mr. Darwin's work; all that I can do now is to illustrate what I have said by two or three cases taken almost at random.

I drew your attention, on a previous evening, to the facts which are embodied in our systems of Classification, which are the results of the examination and comparison of the different members of the animal kingdom one with another. I mentioned that the whole of the animal kingdom is divisible into five sub-kingdoms; that each of these sub-kingdoms is again divisible into provinces; that each province may be divided into classes, and the classes into the successively smaller groups, orders, families, genera, and species.

Now, in each of these groups, the resemblance in structure among the members of the group is closer in proportion as the group is smaller. Thus, a man and a worm are members of the animal kingdom in virtue of certain apparently slight though really fundamental resemblances which they present. But a man and a fish are members of the same sub-kingdom 'Vertebrata', because they are much more like one another than either of them is to a worm, or a snail, or any member of the other sub-kingdoms. For similar reasons men and horses are arranged as members of the same Class, 'Mammalia'; men and apes as members of the same Order, 'Primates'; and if there were any animals more like men than they were like any of the apes, and yet different from men in important and constant particulars of their organization, we should rank them as members of the same Family, or of the same Genus, but as of distinct Species.

That it is possible to arrange all the varied forms of animals into groups, having this sort of singular subordination one to the other, is a very remarkable circumstance; but, as Mr. Darwin remarks, this is a result which is quite to be expected, if the principles which he lays down be correct. Take the case of the races which are known to be produced by the operation of atavism and variability, and the conditions of existence which check and modify these tendencies. Take the case of the pigeons that I brought before you; there it was shown that they might be all classed as belonging to some one of five principal divisions, and that within these divisions other subordinate groups might be formed. The members of these groups are related to one another in just the same way as the genera of a family, and the groups themselves as the families of an order, or the orders of a class; while all have the same sort of structural relations with the wild rock-pigeon, as the members of any great natural group have with a real or imaginary typical form. Now, we know that all varieties of pigeons of every kind have arisen by a process of selective breeding from a common stock, the rock-pigeon; hence, you see, that if all species of animals have proceeded from some common stock, the general character of their structural relations, and of our systems of classification, which express those relations, would be just what we find them to be. In other words, the hypothetical cause is, so far, competent to produce effects similar to those of the real cause.

Take, again, another set of very remarkable facts,—the existence of what are called rudimentary organs, organs for which we can find no obvious use, in the particular animal economy in which they are found, and yet which are there.

Such are the splint-like bones in the leg of the horse, which I here show you, and which correspond with bones which belong to certain toes and fingers in the human hand and foot. In the horse you see they are quite rudimentary, and bear neither toes nor fingers; so that the horse has only one "finger" in his fore-foot and one "toe" in his hind foot. But it is a very curious thing that the animals closely allied to the horse show more toes than he; as the rhinoceros, for instance: he has these extra toes well formed, and anatomical facts show very clearly that he is very closely related to the horse indeed. So we may say that animals, in an anatomical sense nearly related to the horse, have those parts which are rudimentary in him, fully developed.

Again, the sheep and the cow have no cutting-teeth, but only a hard pad in the upper jaw. That is the common characteristic of ruminants in general. But the calf has in its upper jaw some rudiments of teeth which never are developed, and never play the part of teeth at all. Well, if you go back in time, you find some of the older, now extinct, allies of the ruminants have well-developed teeth in their upper jaws; and at the present day the pig (which is in structure closely connected with ruminants) has well-developed teeth in its upper jaw; so that here is another instance of organs well-developed and very useful, in one animal, represented by rudimentary organs, for which we can discover no purpose whatsoever, in another closely allied animal. The whalebone whale, again, has horny "whalebone" plates in its mouth, and no teeth; but the young foetal whale, before it is born, has teeth in its jaws; they, however, are never used, and they never come to anything. But other members of the group to which the whale belongs have well-developed teeth in both jaws.

Upon any hypothesis of special creation, facts of this kind appear to me to be entirely unaccountable and inexplicable, but they cease to be so if you accept Mr. Darwin's hypothesis, and see reason for believing that the whalebone whale and the whale with teeth in its mouth both sprang from a whale that had teeth, and that the teeth of the foetal whale are merely remnants—recollections, if we may so say—of the extinct whale. So in the case of the horse and the rhinoceros: suppose that both have descended by modification from some earlier form which had the normal number of toes, and the persistence of the rudimentary bones which no longer support toes in the horse becomes comprehensible.

In the language that we speak in England, and in the language of the Greeks, there are identical verbal roots, or elements entering into the composition of words. That fact remains unintelligible so long as we suppose English and Greek to be independently created tongues; but when it is shown that both languages are descended from one original, the Sanscrit, we give an explanation of that resemblance. In the same way the existence of identical structural roots, if I may so term them, entering into the composition of widely different animals, is striking evidence in favour of the descent of those animals from a common original.

To turn to another kind of illustration:—If you regard the whole series of stratified rocks—that enormous thickness of sixty or seventy thousand feet that I have mentioned before, constituting the only record we have of a most prodigious lapse of time, that time being, in all probability, but a fraction of that of which we have no record;—if you observe in these successive strata of rocks successive groups of animals arising and dying out, a constant succession, giving you the same kind of impression, as you travel from one group of strata to another, as you would have in travelling from one country to another;—when you find this constant succession of forms, their traces obliterated except to the man of science,—when you look at this wonderful history, and ask what it means, it is only a paltering with words if you are offered the reply,—'They were so created.'

But if, on the other hand, you look on all forms of organized beings as the results of the gradual modification of a primitive type, the facts receive a meaning, and you see that these older conditions are the necessary predecessors of the present. Viewed in this light the facts of palaeontology receive a meaning—upon any other hypothesis, I am unable to see, in the slightest degree, what knowledge or signification we are to draw out of them. Again, note as bearing upon the same point, the singular likeness which obtains between the successive Faunae and Florae, whose remains are preserved on the rocks: you never find any great and enormous difference between the immediately successive Faunae and Florae, unless you have reason to believe there has also been a great lapse of time or a great change of conditions. The animals, for instance, of the newest tertiary rocks, in any part of the world, are always, and without exception, found to be closely allied with those which now live in that part of the world. For example, in Europe, Asia, and Africa, the large mammals are at present rhinoceroses, hippopotamuses, elephants, lions, tigers, oxen, horses, etc.; and if you examine the newest tertiary deposits, which contain the animals and plants which immediately preceded those which now exist in the same country, you do not find gigantic specimens of ant-eaters and kangaroos, but you find rhinoceroses, elephants, lions, tigers, etc.,—of different species to those now living,—but still their close allies. If you turn to South America, where, at the present day, we have great sloths and armadilloes and creatures of that kind, what do you find in the newest tertiaries? You find the great sloth-like creature, the 'Megatherium', and the great armadillo, the 'Glyptodon', and so on. And if you go to Australia you find the same law holds good, namely, that that condition of organic nature which has preceded the one which now exists, presents differences perhaps of species, and of genera, but that the great types of organic structure are the same as those which now flourish.

What meaning has this fact upon any other hypothesis or supposition than one of successive modification? But if the population of the world, in any age, is the result of the gradual modification of the forms which peopled it in the preceding age,—if that has been the case, it is intelligible enough; because we may expect that the creature that results from the modification of an elephantine mammal shall be something like an elephant, and the creature which is produced by the modification of an armadillo-like mammal shall be like an armadillo. Upon that supposition, I say, the facts are intelligible; upon any other, that I am aware of, they are not.

So far, the facts of palaeontology are consistent with almost any form of the doctrine of progressive modification; they would not be absolutely inconsistent with the wild speculations of De Maillet, or with the less objectionable hypothesis of Lamarck. But Mr. Darwin's views have one peculiar merit; and that is, that they are perfectly consistent with an array of facts which are utterly inconsistent with and fatal to, any other hypothesis of progressive modification which has yet been advanced. It is one remarkable peculiarity of Mr. Darwin's hypothesis that it involves no necessary progression or incessant modification, and that it is perfectly consistent with the persistence for any length of time of a given primitive stock, contemporaneously with its modifications. To return to the case of the domestic breeds of pigeons, for example; you have the Dove-cot pigeon, which closely resembles the Rock pigeon, from which they all started, existing at the same time with the others. And if species are developed in the same way in nature, a primitive stock and its modifications may, occasionally, all find the conditions fitted for their existence; and though they come into competition, to a certain extent, with one another, the derivative species may not necessarily extirpate the primitive one, or 'vice versa'.

Now palaeontology shows us many facts which are perfectly harmonious with these observed effects of the process by which Mr. Darwin supposes species to have originated, but which appear to me to be totally inconsistent with any other hypothesis which has been proposed. There are some groups of animals and plants, in the fossil world, which have been said to belong to "persistent types," because they have persisted, with very little change indeed, through a very great range of time, while everything about them has changed largely. There are families of fishes whose type of construction has persisted all the way from the carboniferous rock right up to the cretaceous; and others which have lasted through almost the whole range of the secondary rocks, and from the lias to the older tertiaries. It is something stupendous this—to consider a genus lasting without essential modifications through all this enormous lapse of time while almost everything else was changed and modified.

Thus I have no doubt that Mr. Darwin's hypothesis will be found competent to explain the majority of the phenomena exhibited by species in nature; but in an earlier lecture I spoke cautiously with respect to its power of explaining all the physiological peculiarities of species.

There is, in fact, one set of these peculiarities which the theory of selective modification, as it stands at present, is not wholly competent to explain, and that is the group of phenomena which I mentioned to you under the name of Hybridism, and which I explained to consist in the sterility of the offspring of certain species when crossed one with another. It matters not one whit whether this sterility is universal, or whether it exists only in a single case. Every hypothesis is bound to explain, or, at any rate, not be inconsistent with, the whole of the facts which it professes to account for; and if there is a single one of these facts which can be shown to be inconsistent with (I do not merely mean inexplicable by, but contrary to) the hypothesis, the hypothesis falls to the ground,—it is worth nothing. One fact with which it is positively inconsistent is worth as much, and as powerful in negativing the hypothesis, as five hundred. If I am right in thus defining the obligations of an hypothesis, Mr. Darwin, in order to place his views beyond the reach of all possible assault, ought to be able to demonstrate the possibility of developing from a particular stock by selective breeding, two forms, which should either be unable to cross one with another, or whose cross-bred offspring should be infertile with one another.

For, you see, if you have not done that you have not strictly fulfilled all the conditions of the problem; you have not shown that you can produce, by the cause assumed, all the phenomena which you have in nature. Here are the phenomena of Hybridism staring you in the face, and you cannot say, 'I can, by selective modification, produce these same results.' Now, it is admitted on all hands that, at present, so far as experiments have gone, it has not been found possible to produce this complete physiological divergence by selective breeding. I stated this very clearly before, and I now refer to the point, because, if it could be proved, not only that this HAS not been done, but that it CANNOT be done; if it could be demonstrated that it is impossible to breed selectively, from any stock, a form which shall not breed with another, produced from the same stock; and if we were shown that this must be the necessary and inevitable results of all experiments, I hold that Mr. Darwin's hypothesis would be utterly shattered.

But has this been done? or what is really the state of the case? It is simply that, so far as we have gone yet with our breeding, we have not produced from a common stock two breeds which are not more or less fertile with one another.

I do not know that there is a single fact which would justify any one in saying that any degree of sterility has been observed between breeds absolutely known to have been produced by selective breeding from a common stock. On the other hand, I do not know that there is a single fact which can justify any one in asserting that such sterility cannot be produced by proper experimentation. For my own part, I see every reason to believe that it may, and will be so produced. For, as Mr. Darwin has very properly urged, when we consider the phenomena of sterility, we find they are most capricious; we do not know what it is that the sterility depends on. There are some animals which will not breed in captivity; whether it arises from the simple fact of their being shut up and deprived of their liberty, or not, we do not know, but they certainly will not breed. What an astounding thing this is, to find one of the most important of all functions annihilated by mere imprisonment!

So, again, there are cases known of animals which have been thought by naturalists to be undoubted species, which have yielded perfectly fertile hybrids; while there are other species which present what everybody believes to be varieties* which are more or less infertile with one another. ([Footnote] *And as I conceive with very good reason; but if any objector urges that we cannot prove that they have been produced by artificial or natural selection, the objection must be admitted—ultrasceptical as it is. But in science, scepticism is a duty.) There are other cases which are truly extraordinary; there is one, for example, which has been carefully examined,—of two kinds of sea-weed, of which the male element of the one, which we may call A, fertilizes the female element of the other, B; while the male element of B will not fertilize the female element of A; so that, while the former experiment seems to show us that they are 'varieties', the latter leads to the conviction that they are 'species'.

When we see how capricious and uncertain this sterility is, how unknown the conditions on which it depends, I say that we have no right to affirm that those conditions will not be better understood by and by, and we have no ground for supposing that we may not be able to experiment so as to obtain that crucial result which I mentioned just now. So that though Mr. Darwin's hypothesis does not completely extricate us from this difficulty at present, we have not the least right to say it will not do so.

There is a wide gulf between the thing you cannot explain and the thing that upsets you altogether. There is hardly any hypothesis in this world which has not some fact in connection with it which has not been explained, but that is a very different affair to a fact that entirely opposes your hypothesis; in this case all you can say is, that your hypothesis is in the same position as a good many others.

Now, as to the third test, that there are no other causes competent to explain the phenomena, I explained to you that one should be able to say of an hypothesis, that no other known causes than those supposed by it are competent to give rise to the phenomena. Here, I think, Mr. Darwin's view is pretty strong. I really believe that the alternative is either Darwinism or nothing, for I do not know of any rational conception or theory of the organic universe which has any scientific position at all beside Mr. Darwin's. I do not know of any proposition that has been put before us with the intention of explaining the phenomena of organic nature, which has in its favour a thousandth part of the evidence which may be adduced in favour of Mr. Darwin's views. Whatever may be the objections to his views, certainly all others are absolutely out of court.

Take the Lamarckian hypothesis, for example. Lamarck was a great naturalist, and to a certain extent went the right way to work; he argued from what was undoubtedly a true cause of some of the phenomena of organic nature. He said it is a matter of experience that an animal may be modified more or less in consequence of its desires and consequent actions. Thus, if a man exercise himself as a blacksmith, his arms will become strong and muscular; such organic modification is a result of this particular action and exercise. Lamarck thought that by a very simple supposition based on this truth he could explain the origin of the various animal species: he said, for example, that the short-legged birds which live on fish had been converted into the long-legged waders by desiring to get the fish without wetting their bodies, and so stretching their legs more and more through successive generations. If Lamarck could have shown experimentally, that even races of animals could be produced in this way, there might have been some ground for his speculations. But he could show nothing of the kind, and his hypothesis has pretty well dropped into oblivion, as it deserved to do. I said in an earlier lecture that there are hypotheses and hypotheses, and when people tell you that Mr. Darwin's strongly-based hypothesis is nothing but a mere modification of Lamarck's, you will know what to think of their capacity for forming a judgment on this subject.

But you must recollect that when I say I think it is either Mr. Darwin's hypothesis or nothing; that either we must take his view, or look upon the whole of organic nature as an enigma, the meaning of which is wholly hidden from us; you must understand that I mean that I accept it provisionally, in exactly the same way as I accept any other hypothesis. Men of science do not pledge themselves to creeds; they are bound by articles of no sort; there is not a single belief that it is not a bounden duty with them to hold with a light hand and to part with it cheerfully, the moment it is really proved to be contrary to any fact, great or small. And if, in course of time I see good reasons for such a proceeding, I shall have no hesitation in coming before you, and pointing out any change in my opinion without finding the slightest occasion to blush for so doing. So I say that we accept this view as we accept any other, so long as it will help us, and we feel bound to retain it only so long as it will serve our great purpose—the improvement of Man's estate and the widening of his knowledge. The moment this, or any other conception, ceases to be useful for these purposes, away with it to the four winds; we care not what becomes of it!

But to say truth, although it has been my business to attend closely to the controversies roused by the publication of Mr. Darwin's book, I think that not one of the enormous mass of objections and obstacles which have been raised is of any very great value, except that sterility case which I brought before you just now. All the rest are misunderstandings of some sort, arising either from prejudice, or want of knowledge, or still more from want of patience and care in reading the work.

For you must recollect that it is not a book to be read with as much ease as its pleasant style may lead you to imagine. You spin through it as if it were a novel the first time you read it, and think you know all about it; the second time you read it you think you know rather less about it; and the third time, you are amazed to find how little you have really apprehended its vast scope and objects. I can positively say that I never take it up without finding in it some new view, or light, or suggestion that I have not noticed before. That is the best characteristic of a thorough and profound book; and I believe this feature of the 'Origin of Species' explains why so many persons have ventured to pass judgment and criticisms upon it which are by no means worth the paper they are written on.

Before concluding these lectures there is one point to which I must advert,—though, as Mr. Darwin has said nothing about man in his book, it concerns myself rather than him;—for I have strongly maintained on sundry occasions that if Mr. Darwin's views are sound, they apply as much to man as to the lower mammals, seeing that it is perfectly demonstrable that the structural differences which separate man from the apes are not greater than those which separate some apes from others. There cannot be the slightest doubt in the world that the argument which applies to the improvement of the horse from an earlier stock, or of ape from ape, applies to the improvement of man from some simpler and lower stock than man. There is not a single faculty—functional or structural, moral, intellectual, or instinctive,—there is no faculty whatever that is not capable of improvement; there is no faculty whatsoever which does not depend upon structure, and as structure tends to vary, it is capable of being improved.

Well, I have taken a good deal of pains at various times to prove this, and I have endeavoured to meet the objections of those who maintain, that the structural differences between man and the lower animals are of so vast a character and enormous extent, that even if Mr. Darwin's views are correct, you cannot imagine this particular modification to take place. It is, in fact, easy matter to prove that, so far as structure is concerned, man differs to no greater extent from the animals which are immediately below him than these do from other members of the same order. Upon the other hand, there is no one who estimates more highly than I do the dignity of human nature, and the width of the gulf in intellectual and moral matters, which lies between man and the whole of the lower creation.

But I find this very argument brought forward vehemently by some. "You say that man has proceeded from a modification of some lower animal, and you take pains to prove that the structural differences which are said to exist in his brain do not exist at all, and you teach that all functions, intellectual, moral, and others, are the expression or the result, in the long run, of structures, and of the molecular forces which they exert." It is quite true that I do so.

"Well, but," I am told at once, somewhat triumphantly, "you say in the same breath that there is a great moral and intellectual chasm between man and the lower animals. How is this possible when you declare that moral and intellectual characteristics depend on structure, and yet tell us that there is no such gulf between the structure of man and that of the lower animals?"

I think that objection is based upon a misconception of the real relations which exist between structure and function, between mechanism and work. Function is the expression of molecular forces and arrangements no doubt; but, does it follow from this, that variation in function so depends upon variation in structure that the former is always exactly proportioned to the latter? If there is no such relation, if the variation in function which follows on a variation in structure, may be enormously greater than the variation of the structure, then, you see, the objection falls to the ground.

Take a couple of watches—made by the same maker, and as completely alike as possible; set them upon the table, and the function of each—which is its rate of going—will be performed in the same manner, and you shall be able to distinguish no difference between them; but let me take a pair of pincers, and if my hand is steady enough to do it, let me just lightly crush together the bearings of the balance-wheel, or force to a slightly different angle the teeth of the escapement of one of them, and of course you know the immediate result will be that the watch, so treated, from that moment will cease to go. But what proportion is there between the structural alteration and the functional result? Is it not perfectly obvious that the alteration is of the minutest kind, yet that slight as it is, it has produced an infinite difference in the performance of the functions of these two instruments?

Well, now, apply that to the present question. What is it that constitutes and makes man what he is? What is it but his power of language—that language giving him the means of recording his experience—making every generation somewhat wiser than its predecessor,—more in accordance with the established order of the universe?

What is it but this power of speech, of recording experience, which enables men to be men—looking before and after and, in some dim sense, understanding the working of this wondrous universe—and which distinguishes man from the whole of the brute world? I say that this functional difference is vast, unfathomable, and truly infinite in its consequences; and I say at the same time, that it may depend upon structural differences which shall be absolutely inappreciable to us with our present means of investigation. What is this very speech that we are talking about? I am speaking to you at this moment, but if you were to alter, in the minutest degree, the proportion of the nervous forces now active in the two nerves which supply the muscles of my glottis, I should become suddenly dumb. The voice is produced only so long as the vocal chords are parallel; and these are parallel only so long as certain muscles contract with exact equality; and that again depends on the equality of action of those two nerves I spoke of. So that a change of the minutest kind in the structure of one of these nerves, or in the structure of the part in which it originates, or of the supply of blood to that part, or of one of the muscles to which it is distributed, might render all of us dumb. But a race of dumb men, deprived of all communication with those who could speak, would be little indeed removed from the brutes. And the moral and intellectual difference between them and ourselves would be practically infinite, though the naturalist should not be able to find a single shadow of even specific structural difference.

But let me dismiss this question now, and, in conclusion, let me say that you may go away with it as my mature conviction, that Mr. Darwin's work is the greatest contribution which has been made to biological science since the publication of the 'Regne Animal' of Cuvier, and since that of the 'History of Development' of Von Baer. I believe that if you strip it of its theoretical part it still remains one of the greatest encyclopaedias of biological doctrine that any one man ever brought forth; and I believe that, if you take it as the embodiment of an hypothesis, it is destined to be the guide of biological and psychological speculation for the next three or four generations.

End of A Critical Examination of "On The Origin of Species".



THE DARWINIAN HYPOTHESIS.*

([Footnote] *'Times', December 26th, 1850.)

DARWIN ON THE ORIGIN OF SPECIES.

There is a growing immensity in the speculations of science to which no human thing or thought at this day is comparable. Apart from the results which science brings us home and securely harvests, there is an expansive force and latitude in its tentative efforts, which lifts us out of ourselves and transfigures our mortality. We may have a preference for moral themes, like the Homeric sage, who had seen and known much:—

"Cities of men And manners, climates, councils, governments";

yet we must end by confession that

"The windy ways of men Are but dust which rises up And is lightly laid again,"

in comparison with the work of nature, to which science testifies, but which has no boundaries in time or space to which science can approximate.

There is something altogether out of the reach of science, and yet the compass of science is practically illimitable. Hence it is that from time to time we are startled and perplexed by theories which have no parallel in the contracted moral world; for the generalizations of science sweep on in ever-widening circles, and more aspiring flights, through a limitless creation. While astronomy, with its telescope, ranges beyond the known stars, and physiology, with its microscope, is subdividing infinite minutiae, we may expect that our historic centuries may be treated as inadequate counters in the history of the planet on which we are placed. We must expect new conceptions of the nature and relations of its denizens, as science acquires the materials for fresh generalizations; nor have we occasion for alarms if a highly advanced knowledge, like that of the eminent Naturalist before us, confronts us with an hypothesis as vast as it is novel. This hypothesis may or may not be sustainable hereafter; it may give way to something else, and higher science may reverse what science has here built up with so much skill and patience, but its sufficiency must be tried by the tests of science alone, if we are to maintain our position as the heirs of Bacon and the acquitters of Galileo. We must weigh this hypothesis strictly in the controversy which is coming, by the only tests which are appropriate, and by no others whatsoever.

The hypothesis to which we point, and of which the present work of Mr. Darwin is but the preliminary outline, may be stated in his own language as follows:—"Species originated by means of natural selection, or through the preservation of the favoured races in the struggle for life." To render this thesis intelligible, it is necessary to interpret its terms. In the first place, what is a species? The question is a simple one, but the right answer to it is hard to find, even if we appeal to those who should know most about it. It is all those animals or plants which have descended from a single pair of parents; it is the smallest distinctly definable group of living organisms; it is an eternal and immutable entity; it is a mere abstraction of the human intellect having no existence in nature. Such are a few of the significations attached to this simple word which may be culled from authoritative sources; and if, leaving terms and theoretical subtleties aside, we turn to facts and endeavour to gather a meaning for ourselves, by studying the things to which, in practice, the name of species is applied, it profits us little. For practice varies as much as theory. Let the botanist or the zoologist examine and describe the productions of a country, and one will pretty certainly disagree with the other as to the number, limits, and definitions of the species into which he groups the very same things. In these islands, we are in the habit of regarding mankind as of one species, but a fortnight's steam will land us in a country where divines and savants, for once in agreement, vie with one another in loudness of assertion, if not in cogency of proof, that men are of different species; and, more particularly, that the species negro is so distinct from our own that the Ten Commandments have actually no reference to him. Even in the calm region of entomology, where, if anywhere in this sinful world, passion and prejudice should fail to stir the mind, one learned coleopterist will fill ten attractive volumes with descriptions of species of beetles, nine-tenths of which are immediately declared by his brother beetle-mongers to be no species at all.

The truth is that the number of distinguishable living creatures almost surpasses imagination. At least a hundred thousand such kinds of insects alone have been described and may be identified in collections, and the number of separable kinds of living things is under estimated at half a million. Seeing that most of these obvious kinds have their accidental varieties, and that they often shade into others by imperceptible degrees, it may well be imagined that the task of distinguishing between what is permanent and what fleeting, what is a species and what a mere variety, is sufficiently formidable.

But is it not possible to apply a test whereby a true species may be known from a mere variety? Is there no criterion of species? Great authorities affirm that there is—that the unions of members of the same species are always fertile, while those of distinct species are either sterile, or their offspring, called hybrids, are so. It is affirmed not only that this is an experimental fact, but that it is a provision for the preservation of the purity of species. Such a criterion as this would be invaluable; but, unfortunately, not only is it not obvious how to apply it in the great majority of cases in which its aid is needed, but its general validity is stoutly denied. The Hon. and Rev. Mr. Herbert, a most trustworthy authority, not only asserts as the result of his own observations and experiments that many hybrids are quite as fertile as the parent species, but he goes so far as to assert that the particular plant 'Crinum capense' is much more fertile when crossed by a distinct species than when fertilised by its proper pollen! On the other hand, the famous Gaertner, though he took the greatest pains to cross the primrose and the cowslip, succeeded only once or twice in several years; and yet it is a well-established fact that the primrose and the cowslip are only varieties of the same kind of plant. Again, such cases as the following are well established. The female of species A, if crossed with the male of species B, is fertile; but, if the female of B is crossed with the male of A, she remains barren. Facts of this kind destroy the value of the supposed criterion.

If, weary of the endless difficulties involved in the determination of species, the investigator, contenting himself with the rough practical distinction of separable kinds, endeavours to study them as they occur in nature—to ascertain their relations to the conditions which surround them, their mutual harmonies and discordances of structure, the bond of union of their parts and their past history, he finds himself, according to the received notions, in a mighty maze, and with, at most, the dimmest adumbration of a plan. If he starts with any one clear conviction, it is that every part of a living creature is cunningly adapted to some special use in its life. Has not his Paley told him that that seemingly useless organ, the spleen, is beautifully adjusted as so much packing between the other organs? And yet, at the outset of his studies, he finds that no adaptive reason whatsoever can be given for one-half of the peculiarities of vegetable structure; he also discovers rudimentary teeth, which are never used, in the gums of the young calf and in those of the foetal whale; insects which never bite have rudimental jaws, and others which never fly have rudimental wings; naturally blind creatures have rudimental eyes; and the halt have rudimentary limbs. So, again, no animal or plant puts on its perfect form at once, but all have to start from the same point, however various the course which each has to pursue. Not only men and horses, and cats and dogs, lobsters and beetles, periwinkles and mussels, but even the very sponges and animalcules commence their existence under forms which are essentially undistinguishable; and this is true of all the infinite variety of plants. Nay, more, all living beings march side by side along the high road of development, and separate the later the more like they are; like people leaving church, who all go down the aisle, but having reached the door some turn into the parsonage, others go down the village, and others part only in the next parish. A man in his development runs for a little while parallel with, though never passing through, the form of the meanest worm, then travels for a space beside the fish, then journeys along with the bird and the reptile for his fellow travellers; and only at last, after a brief companionship with the highest of the four-footed and four-handed world, rises into the dignity of pure manhood. No competent thinker of the present day dreams of explaining these indubitable facts by the notion of the existence of unknown and undiscoverable adaptations to purpose. And we would remind those who, ignorant of the facts, must be moved by authority, that no one has asserted the incompetence of the doctrine of final causes, in its application to physiology and anatomy, more strongly than our own eminent anatomist, Professor Owen, who, speaking of such cases, says ('On the Nature of Limbs', pp. 39, 40): "I think it will be obvious that the principle of final adaptations fails to satisfy all the conditions of the problem."

But, if the doctrine of final causes will not help us to comprehend the anomalies of living structure, the principle of adaptation must surely lead us to understand why certain living beings are found in certain regions of the world and not in others. The palm, as we know, will not grow in our climate, nor the oak in Greenland. The white bear cannot live where the tiger thrives, nor 'vice versa', and the more the natural habits of animal and vegetable species are examined, the more do they seem, on the whole, limited to particular provinces. But when we look into the facts established by the study of the geographical distribution of animals and plants it seems utterly hopeless to attempt to understand the strange and apparently capricious relations which they exhibit. One would be inclined to suppose 'a priori' that every country must be naturally peopled by those animals that are fittest to live and thrive in it. And yet how, on this hypothesis, are we to account for the absence of cattle in the Pampas of South America, when those parts of the New World were discovered? It is not that they were unfit for cattle, for millions of cattle now run wild there; and the like holds good of Australia and New Zealand. It is a curious circumstance, in fact, that the animals and plants of the Northern Hemisphere are not only as well adapted to live in the Southern Hemisphere as its own autochthones, but are in many cases absolutely better adapted, and so overrun and extirpate the aborigines. Clearly, therefore, the species which naturally inhabit a country are not necessarily the best adapted to its climate and other conditions. The inhabitants of islands are often distinct from any other known species of animal or plants (witness our recent examples from the work of Sir Emerson Tennent, on Ceylon), and yet they have almost always a sort of general family resemblance to the animals and plants of the nearest mainland. On the other hand, there is hardly a species of fish, shell, or crab common to the opposite sides of the narrow isthmus of Panama. Wherever we look, then, living nature offers us riddles of difficult solution, if we suppose that what we see is all that can be known of it.

But our knowledge of life is not confined to the existing world. Whatever their minor differences, geologists are agreed as to the vast thickness of the accumulated strata which compose the visible part of our earth, and the inconceivable immensity of the time of whose lapse they are the imperfect, but the only accessible witnesses. Now, throughout the greater part of this long series of stratified rocks are scattered, sometimes very abundantly, multitudes of organic remains, the fossilized exuviae of animals and plants which lived and died while the mud of which the rocks are formed was yet soft ooze, and could receive and bury them. It would be a great error to suppose that these organic remains were fragmentary relics. Our museums exhibit fossil shells of immeasurable antiquity, as perfect as the day they were formed, whole skeletons without a limb disturbed—nay, the changed flesh, the developing embryos, and even the very footsteps of primeval organisms. Thus the naturalist finds in the bowels of the earth species as well defined as, and in some groups of animals more numerous than, those that breathe the upper air. But, singularly enough, the majority of these entombed species are wholly distinct from those that now live. Nor is this unlikeness without its rule and order. As a broad fact, the further we go back in time the less the buried species are like existing forms; and the further apart the sets of extinct creatures are the less they are like one another. In other words, there has been a regular succession of living beings, each younger set being in a very broad and general sense somewhat more like those which now live.

It was once supposed that this succession had been the result of vast successive catastrophes, destructions, and re-creations en masse; but catastrophes are now almost eliminated from geological, or at least palaeontological speculation; and it is admitted on all hands that the seeming breaks in the chain of being are not absolute, but only relative to our imperfect knowledge; that species have replaced species, not in assemblages, but one by one; and that, if it were possible to have all the phenomena of the past presented to us, the convenient epochs and formations of the geologist, though having a certain distinctness, would fade into one another with limits as undefinable as those of the distinct and yet separable colours of the solar spectrum.

Such is a brief summary of the main truths which have been established concerning species. Are these truths ultimate and irresolvable facts, or are their complexities and perplexities the mere expressions of a higher law?

A large number of persons practically assume the former position to be correct. They believe that the writer of the Pentateuch was empowered and commissioned to teach us scientific as well as other truth, that the account we find there of the creation of living things is simply and literally correct, and that anything which seems to contradict it is, by the nature of the case, false. All the phenomena which have been detailed are, on this view, the immediate product of a creative fiat and consequently are out of the domain of science altogether.

Whether this view prove ultimately to be true or false, it is, at any rate, not at present supported by what is commonly regarded as logical proof, even if it be capable of discussion by reason; and hence we consider ourselves at liberty to pass it by, and to turn to those views which profess to rest on a scientific basis only, and therefore admit of being argued to their consequences. And we do this with the less hesitation as it so happens that those persons who are practically conversant with the facts of the case (plainly a considerable advantage) have always thought fit to range themselves under the latter category.

The majority of these competent persons have up to the present time maintained two positions,—the first, that every species is, within certain defined or definable limits, fixed and incapable of modification; the second, that every species was originally produced by a distinct creative act. The second position is obviously incapable of proof or disproof, the direct operations of the Creator not being subjects of science; and it must therefore be regarded as a corollary from the first, the truth or falsehood of which is a matter of evidence. Most persons imagine that the arguments in favour of it are overwhelming; but to some few minds, and these, it must be confessed, intellects of no small power and grasp of knowledge, they have not brought conviction. Among these minds, that of the famous naturalist Lamarck, who possessed a greater acquaintance with the lower forms of life than any man of his day, Cuvier not excepted, and was a good botanist to boot, occupies a prominent place.

Two facts appear to have strongly affected the course of thought of this remarkable man—the one, that finer or stronger links of affinity connect all living beings with one another, and that thus the highest creature grades by multitudinous steps into the lowest; the other, that an organ may be developed in particular directions by exerting itself in particular ways, and that modifications once induced may be transmitted and become hereditary. Putting these facts together, Lamarck endeavoured to account for the first by the operation of the second. Place an animal in new circumstances, says he, and its needs will be altered; the new needs will create new desires, and the attempt to gratify such desires will result in an appropriate modification of the organs exerted. Make a man a blacksmith, and his brachial muscles will develop in accordance with the demands made upon them, and in like manner, says Lamarck, "the efforts of some short-necked bird to catch fish without wetting himself have, with time and perseverance, given rise to all our herons and long-necked waders."

The Lamarckian hypothesis has long since been justly condemned, and it is the established practice for every tyro to raise his heel against the carcass of the dead lion. But it is rarely either wise or instructive to treat even the errors of a really great man with mere ridicule, and in the present case the logical form of the doctrine stands on a very different footing from its substance.

If species have really arisen by the operation of natural conditions, we ought to be able to find those conditions now at work; we ought to be able to discover in nature some power adequate to modify any given kind of animal or plant in such a manner as to give rise to another kind, which would be admitted by naturalists as a distinct species. Lamarck imagined that he had discovered this 'vera causa' in the admitted facts that some organs may be modified by exercise; and that modifications, once produced, are capable of hereditary transmission. It does not seem to have occurred to him to inquire whether there is any reason to believe that there are any limits to the amount of modification producible, or to ask how long an animal is likely to endeavour to gratify an impossible desire. The bird, in our example, would surely have renounced fish dinners long before it had produced the least effect on leg or neck.

Since Lamarck's time, almost all competent naturalists have left speculations on the origin of species to such dreamers as the author of the 'Vestiges', by whose well-intentioned efforts the Lamarckian theory received its final condemnation in the minds of all sound thinkers. Notwithstanding this silence, however, the transmutation theory, as it has been called, has been a "skeleton in the closet" to many an honest zoologist and botanist who had a soul above the mere naming of dried plants and skins. Surely, has such an one thought, nature is a mighty and consistent whole, and the providential order established in the world of life must, if we could only see it rightly, be consistent with that dominant over the multiform shapes of brute matter. But what is the history of astronomy, of all the branches of physics, of chemistry, of medicine, but a narration of the steps by which the human mind has been compelled, often sorely against its will, to recognize the operation of secondary causes in events where ignorance beheld an immediate intervention of a higher power? And when we know that living things are formed of the same elements as the inorganic world, that they act and react upon it, bound by a thousand ties of natural piety, is it probable, nay is it possible, that they, and they alone, should have no order in their seeming disorder, no unity in their seeming multiplicity, should suffer no explanation by the discovery of some central and sublime law of mutual connexion?

Questions of this kind have assuredly often arisen, but it might have been long before they received such expression as would have commanded the respect and attention of the scientific world, had it not been for the publication of the work which prompted this article. Its author, Mr. Darwin, inheritor of a once celebrated name, won his spurs in science when most of those now distinguished were young men, and has for the last 20 years held a place in the front ranks of British philosophers. After a circumnavigatory voyage, undertaken solely for the love of his science, Mr. Darwin published a series of researches which at once arrested the attention of naturalists and geologists; his generalizations have since received ample confirmation, and now command universal assent, nor is it questionable that they have had the most important influence on the progress of science. More recently Mr. Darwin, with a versatility which is among the rarest of gifts, turned his attention to a most difficult question of zoology and minute anatomy; and no living naturalist and anatomist has published a better monograph than that which resulted from his labours. Such a man, at all events, has not entered the sanctuary with unwashed hands, and when he lays before us the results of 20 years' investigation and reflection we must listen even though we be disposed to strike. But, in reading his work it must be confessed that the attention which might at first be dutifully, soon becomes willingly, given, so clear is the author's thought, so outspoken his conviction, so honest and fair the candid expression of his doubts. Those who would judge the book must read it; we shall endeavour only to make its line of argument and its philosophical position intelligible to the general reader in our own way.

The Baker-street Bazaar has just been exhibiting its familiar annual spectacle. Straight-backed, small-headed, big-barrelled oxen, as dissimilar from any wild species as can well be imagined, contended for attention and praise with sheep of half-a-dozen different breeds and styes of bloated preposterous pigs, no more like a wild boar or sow than a city alderman is like an ourang-outang. The cattle show has been, and perhaps may again be, succeeded by a poultry show, of whose crowing and clucking prodigies it can only be certainly predicated that they will be very unlike the aboriginal 'Phasianus gallus'. If the seeker after animal anomalies is not satisfied, a turn or two in Seven Dials will convince him that the breeds of pigeons are quite as extraordinary and unlike one another and their parent stock, while the Horticultural Society will provide him with any number of corresponding vegetable aberrations from nature's types. He will learn with no little surprise, too, in the course of his travels, that the proprietors and producers of these animal and vegetable anomalies regard them as distinct species, with a firm belief, the strength of which is exactly proportioned to their ignorance of scientific biology, and which is the more remarkable as they are all proud of their skill in ORIGINATING such "species."

On careful inquiry it is found that all these, and the many other artificial breeds or races of animals and plants, have been produced by one method. The breeder—and a skilful one must be a person of much sagacity and natural or acquired perceptive faculty—notes some slight difference, arising he knows not how, in some individuals of his stock. If he wish to perpetuate the difference, to form a breed with the peculiarity in question strongly marked, he selects such male and female individuals as exhibit the desired character, and breeds from them. Their offspring are then carefully examined, and those which exhibit the peculiarity the most distinctly are selected for breeding, and this operation is repeated until the desired amount of divergence from the primitive stock is reached. It is then found that by continuing the process of selection—always breeding, that is, from well-marked forms, and allowing no impure crosses to interfere,—a race may be formed, the tendency of which to reproduce itself is exceedingly strong; nor is the limit to the amount of divergence which may be thus produced known, but one thing is certain, that, if certain breeds of dogs, or of pigeons, or of horses, were known only in a fossil state, no naturalist would hesitate in regarding them as distinct species.

But, in all these cases we have HUMAN INTERFERENCE. Without the breeder there would be no selection, and without the selection no race. Before admitting the possibility of natural species having originated in any similar way, it must be proved that there is in nature some power which takes the place of man, and performs a selection sua sponte. It is the claim of Mr. Darwin that he professes to have discovered the existence and the modus operandi of this natural selection, as he terms it; and, if he be right, the process is perfectly simple and comprehensible, and irresistibly deducible from very familiar but well nigh forgotten facts.

Who, for instance, has duly reflected upon all the consequences of the marvellous struggle for existence which is daily and hourly going on among living beings? Not only does every animal live at the expense of some other animal or plant, but the very plants are at war. The ground is full of seeds that cannot rise into seedlings; the seedlings rob one another of air, light and water, the strongest robber winning the day, and extinguishing his competitors. Year after year, the wild animals with which man never interferes are, on the average, neither more nor less numerous than they were; and yet we know that the annual produce of every pair is from one to perhaps a million young,—so that it is mathematically certain that, on the average, as many are killed by natural causes as are born every year, and those only escape which happen to be a little better fitted to resist destruction than those which die. The individuals of a species are like the crew of a foundered ship, and none but good swimmers have a chance of reaching the land.

Such being unquestionably the necessary conditions under which living creatures exist, Mr. Darwin discovers in them the instrument of natural selection. Suppose that in the midst of this incessant competition some individuals of a species (A) present accidental variations which happen to fit them a little better than their fellows for the struggle in which they are engaged, then the chances are in favour, not only of these individuals being better nourished than the others, but of their predominating over their fellows in other ways, and of having a better chance of leaving offspring, which will of course tend to reproduce the peculiarities of their parents. Their offspring will, by a parity of reasoning, tend to predominate over their contemporaries, and there being (suppose) no room for more than one species such as A, the weaker variety will eventually be destroyed by the new destructive influence which is thrown into the scale, and the stronger will take its place. Surrounding conditions remaining unchanged, the new variety (which we may call B)—supposed, for argument's sake, to be the best adapted for these conditions which can be got out of the original stock—will remain unchanged, all accidental deviations from the type becoming at once extinguished, as less fit for their post than B itself. The tendency of B to persist will grow with its persistence through successive generations, and it will acquire all the characters of a new species.

But, on the other hand, if the conditions of life change in any degree, however slight, B may no longer be that form which is best adapted to withstand their destructive, and profit by their sustaining, influence; in which case if it should give rise to a more competent variety (C), this will take its place and become a new species; and thus, by 'natural selection', the species B and C will be successively derived from A.

That this most ingenious hypothesis enables us to give a reason for many apparent anomalies in the distribution of living beings in time and space, and that it is not contradicted by the main phenomena of life and organization appear to us to be unquestionable; and so far it must be admitted to have an immense advantage over any of its predecessors. But it is quite another matter to affirm absolutely either the truth or falsehood of Mr. Darwin's views at the present stage of the inquiry. Goethe has an excellent aphorism defining that state of mind which he calls 'Thatige Skepsis'—active doubt. It is doubt which so loves truth that it neither dares rest in doubting, nor extinguish itself by unjustified belief; and we commend this state of mind to students of species, with respect to Mr. Darwin's or any other hypothesis, as to their origin. The combined investigations of another 20 years may, perhaps, enable naturalists to say whether the modifying causes and the selective power, which Mr. Darwin has satisfactorily shown to exist in nature, are competent to produce all the effects he ascribes to them, or whether, on the other hand, he has been led to over-estimate the value of his principle of natural selection, as greatly as Lamarck overestimated his vera causa of modification by exercise.

But there is, at all events, one advantage possessed by the more recent writer over his predecessor. Mr. Darwin abhors mere speculation as nature abhors a vacuum. He is as greedy of cases and precedents as any constitutional lawyer, and all the principles he lays down are capable of being brought to the test of observation and experiment. The path he bids us follow professes to be, not a mere airy track, fabricated of ideal cobwebs, but a solid and broad bridge of facts. If it be so, it will carry us safely over many a chasm in our knowledge, and lead us to a region free from the snares of those fascinating but barren Virgins, the Final Causes, against whom a high authority has so justly warned us. "My sons, dig in the vineyard," were the last words of the old man in the fable; and, though the sons found no treasure, they made their fortunes by the grapes.

End of The Darwinian Hypothesis.



TIME AND LIFE.*

([Footnote] *"Macmillan's Magazine", December 1859.)

MR. DARWIN'S "ORIGIN OF SPECIES".

Everyone knows that that superficial film of the earth's substance, hardly ten miles thick, which is accessible to human investigation, is composed for the most part of beds or strata of stone, the consolidated muds and sands of former seas and lakes, which have been deposited one upon the other, and hence are the older the deeper they lie. These multitudinous strata present such resemblances and differences among themselves that they are capable of classification into groups or formations, and these formations again are brigaded together into still larger assemblages, called by the older geologists, primary, secondary, and tertiary; by the moderns, palaeozoic, mesozoic, and cainozoic: the basis of the former nomenclature being the relative age of the groups of strata; that of the latter, the kinds of living forms contained in them.

Though but a film if compared with the total diameter of our planet, the total series of formations is vast indeed when measured by any human standard, and, as all action implies time, so are we compelled to regard these mineral masses as a measure of the time which has elapsed during their accumulation. The amount of the time which they represent is, of course, in the inverse proportion of the intensity of the forces which have been in operation. If, in the ancient world, mud and sand accumulated on sea-bottoms at tenfold their present rate, it is clear that a bed of mud or sand ten feet thick would have been formed then in the same time as a stratum of similar materials one foot thick would be formed now, and 'vice versa'.

At the outset of his studies, therefore, the physical geologist had to choose between two hypotheses; either, throughout the ages which are represented by the accumulated strata, and which we may call 'geologic time', the forces of nature have operated with much same average intensity as at present, and hence the lapse of time which they represent must be something prodigious and inconceivable, or, in the primeval epochs, the natural powers were infinitely more intense than now, and hence the time through which they acted to produce the effects we see was comparatively short.

The earlier geologists adopted the latter view almost with one consent. For they had little knowledge of the present workings of nature, and they read the records of geologic time as a child reads the history of Rome or Greece, and fancies that antiquity was grand, heroic, and unlike the present because it is unlike his little experience of the present.

Even so the earlier observers were moved with wonder at the seeming contrast between the ancient and the present order of nature. The elemental forces seemed to have been grander and more energetic in primeval times. Upheaved and contorted, rifted and fissured, pierced by dykes of molten matter or worn away over vast areas by aqueous action, the older rocks appeared to bear witness to a state of things far different from that exhibited by the peaceful epoch on which the lot of man has fallen.

But by degrees thoughtful students of geology have been led to perceive that the earliest efforts of nature have been by no means the grandest. Alps and Andes are children of yesterday when compared with Snowdon and the Cumberland hills; and the so-called glacial epoch—that in which perhaps the most extensive physical changes of which any record remaining occurred—is the last and the newest of the revolutions of the globe. And in proportion as physical geography—which is the geology of our own epoch—has grown into a science, and the present order of nature has been ransacked to find what, hibernice, we may call precedents for the phenomena of the past, so the apparent necessity of supposing the past to be widely different from the present has diminished.

The transporting power of the greatest deluge which can be imagined sinks into insignificance beside that of the slowly floating, slowly melting iceberg, or the glacier creeping along at its snail's pace of a yard a day. The study of the deltas of the Nile, the Ganges, and the Mississippi has taught us how slow is the wearing action of water, how vast its effects when time is allowed for its operation. The reefs of the Pacific, the deep-sea soundings of the Atlantic, show that it is to the slow-growing coral and to the imperceptible animalcule, which lives its brief space and then adds its tiny shell to the muddy cairn left by its brethren and ancestors, that we must look as the agents in the formation of limestone and chalk, and not to hypothetical oceans saturated with calcareous salts and suddenly depositing them.

And while the inquirer has thus learnt that existing forces—GIVE THEM TIME—are competent to produce all the physical phenomena we meet with in the rocks, so, on the other side, the study of the marks left in the ancient strata by past physical actions shows that these were similar to those which now obtain. Ancient beaches are met with whose pebbles are like those found on modern shores; the hardened sea-sands of the oldest epochs show ripple-marks, such as may now be found on every sandy coast; nay, more, the pits left by ancient rain-drops prove that even in the very earliest ages, the "bow in the clouds" must have adorned the palaeozoic firmament. So that if we could reverse the legend of the Seven Sleepers,—if we could sleep back through the past, and awake a million ages before our own epoch, in the midst of the earliest geologic times,—there is no reason to believe that sea, or sky, or the aspect of the land would warn us of the marvellous retrospection.

Such are the beliefs which modern physical geologists hold, or, at any rate, tend towards holding. But, in so doing, it is obvious that they by no means prejudge the question, as to what the physical condition of the globe may have been before our chapters of its history begin, in what may be called (with that licence which is implied in the often-used term "prehistoric epoch") "pre-geologic time." The views indicated, in fact, are not only quite consistent with the hypothesis, that, in the still earlier period referred to, the condition of our world was very different; but they may be held by some to necessitate that hypothesis. The physical philosopher who is accurately acquainted with the velocity of a cannon-ball, and the precise character of the line which it traverses for a yard of its course, is necessitated by what he knows of the laws of nature to conclude that it came from a certain spot, whence it was impelled by a certain force, and that it has followed a certain trajectory. In like manner, the student of physical geology, who fully believes in the uniformity of the general condition of the earth through geologic time, may feel compelled by what he knows of causation, and by the general analogy of nature, to suppose that our solar system was once a nebulous mass; that it gradually condensed, that it broke up into that wonderful group of harmoniously rolling balls we call planets and satellites, and that then each of these underwent its appointed metamorphosis, until at last our own share of the cosmic vapour passed into that condition in which we first meet with definite records of its state, and in which it has since, with comparatively little change, remained.

The doctrine of uniformity and the doctrine of progression are, therefore, perfectly consistent; perhaps, indeed, they might be shown to be necessarily connected with one another.

If, however, the condition of the world, which has obtained throughout geologic time, is but the sequel to a vast series of changes which took place in pre-geologic time, then it seems not unlikely that the duration of this latter is to that of the former as the vast extent of geologic time is to the length of the brief epoch we call the historical period; and that even the oldest rocks are records of an epoch almost infinitely remote from that which could have witnessed the first shaping of our globe.

It is probable that no modern geologist would hesitate to admit the general validity of these reasonings when applied to the physics of his subject, whence it is the more remarkable that the moment the question changes from one of physics and chemistry to one of natural history, scientific opinions and the popular prejudices, which reflect them in a distorted form, undergo a sudden metamorphosis. Geologists and palaeontologists write about the "beginning of life" and the "first-created forms of living beings," as if they were the most familiar things in the world; and even cautious writers seem to be on quite friendly terms with the "archetype" whereby the Creator was guided "amidst the crash of falling worlds." Just as it used to be imagined that the ancient world was physically opposed to the present, so it is still widely assumed that the living population of our globe, whether animal or vegetable, in the older epochs, exhibited forms so strikingly contrasted with those which we see around us, that there is hardly anything in common between the two. It is constantly tacitly assumed that we have before us all the forms of life which have ever existed; and though the progress of knowledge, yearly and almost monthly, drives the defenders of that position from their ground, they entrench themselves in the new line of defences as if nothing had happened, and proclaim that the NEW beginning is the REAL beginning.

Without for an instant denying or endeavouring to soften down the considerable positive differences (the negative ones are met by another line of argument) which undoubtedly obtain between the ancient and the modern worlds of life, we believe they have been vastly overstated and exaggerated, and this belief is based upon certain facts whose value does not seem to have been fully appreciated, though they have long been more or less completely known.

The multitudinous kinds of animals and plants, both recent and fossil, are, as is well known, arranged by zoologists and botanists, in accordance with their natural relations, into groups which receive the names of sub-kingdoms, classes, orders, families, genera and species. Now it is a most remarkable circumstance that, viewed on the great scale, living beings have differed so little throughout all geologic time that there is no sub-kingdom and no class wholly extinct or without living representatives.

If we descend to the smaller groups, we find that the number of orders of plants is about two hundred; and I have it on the best authority that not one of these is exclusively fossil; so that there is absolutely not a single extinct ordinal type of vegetable life; and it is not until we descend to the next group, or the families, that we find types which are wholly extinct. The number of orders of animals, on the other hand, may be reckoned at a hundred and twenty, or thereabouts, and of these, eight or nine have no living representatives. The proportion of extinct ordinal types of animals to the existing types, therefore, does not exceed seven per cent—a marvellously small proportion when we consider the vastness of geologic time.

Another class of considerations—of a different kind, it is true, but tending in the same direction—seems to have been overlooked. Not only is it true that the general plan of construction of animals and plants has been the same in all recorded time as at present, but there are particular kinds of animals and plants which have existed throughout vast epochs, sometimes through the whole range of recorded time, with very little change. By reason of this persistency, the typical form of such a kind might be called a "persistent type," in contradistinction to those types which have appeared for but a short time in the course of the world's history. Examples of these persistent types are abundant enough in both the vegetable and the animal kingdoms. The oldest group of plants with which we are well acquainted is that of whose remains coal is constituted; and as far as they can be identified, the carboniferous plants are ferns, or club-mosses, or Coniferae, in many cases generically identical with those now living!

Among animals, instances of the same kind may be found in every sub-kingdom. The 'Globigerina' of the Atlantic soundings is identical with that which occurs in the chalk; and the casts of lower silurian 'Foraminifera', which Ehrenberg has recently described, seem to indicate the existence at that remote period of forms singularly like those which now exist. Among the corals, the palaeozoic 'Tabulata' are constructed on precisely the same type as the modern millepores; and if we turn to molluscs, the most competent malacologists fail to discover any generic distinction between the 'Craniae', 'Lingulae' and 'Discinae' of the silurian rocks and those which now live. Our existing 'Nautilus' has its representative species in every great formation, from the oldest to the newest; and 'Loligo', the squid of modern seas, appears in the lias, or at the bottom of the mesozoic series, in a form, at most, specifically different from its living congeners. In the great assemblage of annulose animals, the two highest classes, the insects and spider tribe, exhibit a wonderful persistency of type. The cockroaches of the carboniferous epoch are exceedingly similar to those which now run about our coal-cellars; and its locusts, termites and dragon-flies are closely allied to the members of the same groups which now chirrup about our fields, undermine our houses, or sail with swift grace about the banks of our sedgy pools. And, in like manner, the palaeozoic scorpions can only be distinguished by the eye of a naturalist from the modern ones.

Finally, with respect to the 'Vertebrata', the same law holds good: certain types, such as those of the ganoid and placoid fishes, having persisted from the palaeozoic epoch to the present time without a greater amount of deviation from the normal standard than that which is seen within the limits of the group as it now exists. Even among the 'Reptilia'—the class which exhibits the largest proportion of entirely extinct forms of any one type,—that of the 'Crocodilia', has persisted from at least the commencement of the Mesozoic epoch up to the present time with so much constancy, that the amount of change which it exhibits may fairly, in relation to the time which has elapsed, be called insignificant. And the imperfect knowledge we have of the ancient mammalian population of our earth leads to the belief that certain of its types, such as that of the 'Marsupialia', have persisted with correspondingly little change through a similar range of time.

Thus it would appear to be demonstrable, that, notwithstanding the great change which is exhibited by the animal population of the world as a whole, certain types have persisted comparatively without alteration, and the question arises, What bearing have such facts as these on our notions of the history of life through geological time? The answer to this question would seem to depend on the view we take respecting the origin of species in general. If we assume that every species of animal and of plant was formed by a distinct act of creative power, and if the species which have incessantly succeeded one another were placed upon the globe by these separate acts, then the existence of persistent types is simply an unintelligible irregularity. Such assumption, however, is as unsupported by tradition or by Revelation as it is opposed by the analogy of the rest of the operations of nature; and those who imagine that, by adopting any such hypothesis, they are strengthening the hands of the advocates of the letter of the Mosaic account, are simply mistaken. If, on the other hand, we adopt that hypothesis to which alone the study of physiology lends any support—that hypothesis which, having struggled beyond the reach of those fatal supporters, the Telliameds and Vestigiarians, who so nearly caused its suffocation by wind in early infancy, is now winning at least the provisional assent of all the best thinkers of the day—the hypothesis that the forms or species of living beings, as we know them, have been produced by the gradual modification of pre-existing species—then the existence of persistent types seems to teach us much. Just as a small portion of a great curve appears straight, the apparent absence of change in direction of the line being the exponent of the vast extent of the whole, in proportion to the part we see; so, if it be true that all living species are the result of the modification of other and simpler forms, the existence of these little altered persistent types, ranging through all geological time, must indicate that they are but the final terms of an enormous series of modifications, which had their being in the great lapse of pregeologic time, and are now perhaps for ever lost.

Previous Part     1  2  3  4  5  6  7  8  9  10  11     Next Part
Home - Random Browse