p-books.com
The Science of Human Nature - A Psychology for Beginners
by William Henry Pyle
Previous Part     1  2  3  4  5     Next Part
Home - Random Browse

But the matter is complicated by the fact that things are experienced in different connections in perceptive experience. I do not always experience "horse" together with "bridle." I sometimes see horses in a pasture eating clover. So, as far as this last experience is concerned, when I think "horse" I should also think "clover." I sometimes see a horse running when a train whistles, so "whistle" and "horse" should be coupled in my mind. A horse once kicked me on the shoulder, so "horse" and "shoulder" should be connected in my mind. And so they are. The very fact that these various experiences come back to me proves that they are connected in my mind in accordance with the original experiences. The revival of various horse experiences has come to me faster than I could write them down, and they are all bound together in my memory. If I should write them all out, it would take many hours, perhaps days.

Not only are these "horse ideas" bound together with one another, but they are bound more or less directly, more or less closely, to everything else in my life. I can, therefore, pass in thought from the idea "horse" to any other idea, directly or indirectly. Now, in any given case, what idea will actually come first after I have the idea "horse"? This depends upon the tendencies established in the nervous system. The brain process underlying the idea "horse" has connections with many other processes and tends to excite these processes. The factors that strengthen these tendencies or connections are the frequency, recency, primacy, and vividness of experience. Let us consider, in some detail, each of these factors.

Primacy of Experience. A strong factor in determining association is the first experience. The first, the original, coupling of ideas tends to persist. The first connection is nearly always a strong one, and is also strengthened by frequent repetition in memory. Our first experience with people and things persists with great strength, across the years, in spite of other associations and connections established later. Just now there comes to mind my first experience with a certain famous scientist. It was many years ago. I was a student in an eastern university. This man gave a public lecture at the opening of the session. I remember many details of the occurrence with great vividness. Although I studied under this man for three years, no other experience with him is more prominent than the first. First experiences give rise to such strong connections between ideas that these connections often persist and hold their own as against other connections depending upon other factors.

The practical consequences of this factor in teaching are, of course, evident. Both teachers and parents should take great care in the matter of the first experiences of children. If the idea-connections of first experiences are likely to persist, then these connections should be desirable ones. They should not be useless connections, nor should they, ordinarily, be connections that will have to be radically undone later. Usually it is not economical to build up connections between ideas that will not serve permanently, except in cases in which the immaturity of the mind makes such a procedure necessary.

Recency of Experience. The most recent connection of ideas is relatively strong, and is often the determining one. But the most recent connection must be very recent or it has no especial value. If I have seen a certain friend to-day, and his name is brought to mind now, to-day's experience with him will likely be brought to mind first. But if my last seeing him was some days or months ago, the idea-connection of the last meeting has no great value. Of course, circumstances always alter the matter. Perhaps we should say in the last instance that, other things being equal, the last experience has no special value. If the last experience was an unusual one, such as a death or a marriage, then it has a value due to its vividness and intensity and its emotional aspects. These factors not only add strength to the connections made at the time but are the cause of frequent revivals of this last experience in memory in the succeeding days. All these factors taken together often give a last experience great associative strength, even though the last experience is not recent.

Frequency of Experience. The most frequent connection of ideas is probably the most important factor of all in determining future associations. The first connection is but one, and the last connection is but one, while repeated connections may be many in number. Connections which recur frequently usually overcome all other connections. Hence frequency is the dominant factor in association. Most of the strength of first connections is due to repetitions in memory later. The first experience passes through the mind again and again as memory, and thereby becomes strengthened. The fact that repetition of connections establishes these connections is, of course, the justification of drill and review in school studies. The practical needs of life demand that certain ideas be associated so that one calls up the other. Teachers and parents, knowing these desirable connections, endeavor to fix them in the minds of children by repetition. The important facts of history, literature, civics, and science we endeavor, by means of repetition, to fasten in the child's mind.

Vividness and Intensity of Experience. A vivid experience is one that excites and arouses us, strongly stimulating our feelings. Such experiences establish strong bonds of connection. When I think of a railroad wreck, I think of one in which I participated. The experience was vivid, intense, and aroused my emotions. I hardly knew whether I was dead or alive. Then, secondly, I usually think of a wreck which I witnessed in childhood. A train plunged through a bridge and eighteen cars were piled up in the ravine. The experience was vivid and produced a deep and lasting impression on me.

The practical significance of this factor is, of course, great. When ideas are presented to pupils these ideas should be made clear. Every conceivable device should be used to clarify and explain,—concrete demonstration, the use of objects and diagrams, pictures and drawings, and abundant oral illustration. We must be sure that the one taught understands, that the ideas become focal in consciousness and take hold of the individual. This is the main factor in what is known as "interest." An interesting thing is one that takes hold of us and possesses us so that we cannot get away from it. Such experiences are vivid and have rich emotional connections or accompaniments. Ideas that are experienced together at such times are strongly connected.

Mental Set or Attitude. Another influence always operative in determining the association of ideas is mental set. By mental set we mean the mood or attitude one is in,—whether one is sad or glad, well or ill, fresh or fatigued, etc. What one has just been thinking about, what one has just been doing, are always factors that determine the direction of association. One often notices the effects of mental set in reading newspapers. If one's mind has been deeply occupied with some subject and one then starts to read a newspaper, one may actually miscall many of the words in the article he is reading; the words are made to fit in with what is in his mind. For example, if one is all wrought up over a wedding, many words beginning with "w" and having about the same length as the word "wedding," will be read as "wedding."

Mental set may be permanent or temporary. By permanent we mean the strong tendencies that are built up by continued thought in a certain direction. One becomes a Methodist, a Democrat, a conservative, a radical, a pessimist, an optimist, etc., by continuity of similar experiences and similar reactions to these experiences. Germans, French, Irish, Italians, Chinese, have characteristic sets or ways of reacting to typical situations that may be called racial. These prejudicial ways of reacting may be called racial sets or attitudes. Religious, political, and social prejudices may all be called sets or attitudes.

Temporary sets or attitudes are leanings and prejudices that are due to temporary states of mind. The fact that one has headache, or indigestion, or is in a hurry, or is angry, or is hungry, or is emotionally excited over something will, for the time, be a factor in determining the direction of association.

One of the tasks of education is to build up sets or attitudes, permanent prejudices, to be constant factors in guiding association and, consequently, action. We wish to build up permanent attitudes toward truth, honesty, industry, sympathy, zeal, persistence, etc. It is evident that attitude is merely an aspect of habit. It is an habitual way of reacting to a definite and typical situation. This habitual way is strengthened by repetition, so that set or attitude finally, after years of repetition, becomes a part of our nature. Our prejudices become as strong, seemingly, as our instinctive tendencies. After a man has thought in a particular groove for years, it is about as sure that he will come to certain definite conclusions on matters in the line of his thought as that he would give typical instinctive or even reflex reactions. We know the direction association will take for a Presbyterian in religious matters, for a Democrat in political matters, with about as much certainty as we know what their actions will be in situations that evoke instinctive reactions.

Thinking and Reasoning. Thinking is the passing of ideas in the mind. This flow of ideas is in accordance with the laws of association above discussed. The order in which the ideas come is the order fixed by experience, the order as determined by the various factors above enumerated.

In early life, one's mind is chiefly perceptual, it is what we see and hear and taste and smell. As one grows older his mind grows more and more ideational. With increasing age, a larger and larger percentage of our mental life is made up of ideas, of memories. The child lives in the present, in a world of perceptions. A man is not so much tied down to the present; he lives in memory and anticipation. He thinks more than does the child. A man is content to sit down in his chair and think for hours at a time, a child is not. This thinking is the passing of ideas, now one, then another and another. These ideas are the survivals or revivals of our past experience. The order of their coming depends on our past experience.

As I sit here and write, there surge up out of my past, ideas of creeks and rivers and hills, horses and cows and dogs, boys and girls, men and women, work and play, school days, friends,—an endless chain of ideas. This "flow" of ideas is often started by a perception. For illustration, I see a letter on the table, a letter from my brother. I then have a visual image of my brother. I think of him as I saw him last. I think of what he said. I think of his children, of his home, of his boyhood, and our early life together. Then I think of our mother and the old home, and so on and on. Presently I glance at a history among my books, and immediately think of Greece and Athens and the Acropolis, Plato, Aristotle, and Socrates, schoolmates and teachers, and friends connected in one way or another with my college study of Greek.

In this description of the process of thinking, I have repeatedly used the words "think of." I might have said instead, "there came to mind ideas of Athens, ideas of friends," etc. Thinking, then, is a general term for our idea-life.

Reasoning is a form of thinking. Reasoning, too, is a flow of ideas. But while reasoning is thinking, it is a special form of thinking; it is thinking to a purpose. In thinking as above described and illustrated, no immediate ends of the person are served; while in reasoning some end is always sought. In reasoning, the flow of ideas must reach some particular idea that will serve the need of the moment, the need of the problem at hand. Reasoning, then, is controlled thinking, thinking centering about a problem, about a situation that one must meet.

The statement that reasoning is controlled thinking needs some explanation, for the reader at once is likely to want to know what does the controlling. There is not some special faculty or power that does the controlling. The control is exercised by the set into which one is thrown by the situation which confronts one. The set puts certain nerve-tracts into readiness to conduct, or in other words, makes certain groups of ideas come into mind, and makes one satisfied only if the right ideas come. As long as ideas come that do not satisfy, the flow keeps on, taking one direction and then another, in accordance with the way our ideas have become organized. An idea finally comes that satisfies. We are then said to have reached a conclusion, to have made up our mind, to have solved our problem.

But the fact that we are satisfied is no sure sign that the problem is correctly solved. It means only that our past experiences, available at the time through association, say that the conclusion is right. Or, in more scientific terms, that the conclusion is in harmony with our past experience, as it has been organized and made available through association. There is not within us a little being, a reasoner, that sits and watches ideas file by and passes judgment upon them. The real judge is our nervous system with its organized bonds or connections.

An illustration may make the matter clearer: A boy walking along in the woods comes to a stream too wide for him to jump across. He wishes to be on the other side, so here is a situation that must be met, a problem that must be solved. A flow of ideas is started centering about the problem. The flow is entirely determined and directed by past experience and the present situation. The boy pauses, looks about, and sees on the bank a pole and several large stones. He has walked on poles and on fences, he therefore sees himself putting the pole across the stream and walking on it. This may be in actual visual imagery, or it may be in words. He may merely say, "I will put the pole across and walk on it." But, before having time to do it, he may recall walking on poles that turned. He is not then satisfied with the pole idea. The perception of stones may next become clear in his mind, and if no inhibiting or hindering idea comes up, the stone idea carries him into action. He piles the stones into the stream and walks across.

As was mentioned above, the flow of ideas may take different forms. The imagery may take any form but is usually visual, auditory, motor, or verbal.

Further discussion of the point that reasoning is determined by past experience may be necessary. Suppose the teacher ask the class a number of different questions, moral, religious, political. Many different answers to the questions will be received, in some cases as many answers to the questions as there are pupils. Ask whether it is ever right to steal, whether it is ever right to lie, whether it is ever right to fight, whether it is ever right to disobey a parent or teacher, whether oak is stronger than maple, whether iron expands more when heated than does copper, whether one should always feed beggars, etc. The answers received, in each case, depend on the previous experience of the pupils. The more nearly alike the experiences of the pupils, the more nearly alike will be the answers. The more divergent the experiences, the more different will be the answers.

The basis of reasoning is ultimately the same sort of thing as the basis of habit. We have repeated experiences of the same kind. The ideas of these experiences become welded together in a definite way. Association between certain groups of ideas becomes well fixed. Later situations involving these groups of ideas set up definite trains of association. We come always to definite conclusions from the same situations provided that we are in the same mental set and the factors involved are the same.

Throughout early life we have definite moral and religious ideas presented to us. We come to think in definite ways about them or with them. It therefore comes about that every day we live, we are determining the way we shall in the future reason about things. We are each day getting the material for the solution of the problems that will be presented to us by future situations. And the reason that one of us will solve those problems in a different way from another is because of having somewhat different experiences, and of organizing them in a different way.

Meaning and the Organization of Ideas. In the preceding paragraphs we have several times spoken of the organization of ideas. Let us now see just what is meant by this expression. Intimately connected with the organization of ideas is meaning. What is the meaning of an idea? The meaning of an idea is another idea or group of ideas that are very closely associated with it. When there comes to mind an idea that has arisen out of repeated experience, there come almost immediately with it other ideas, perhaps vivid images which have been connected with the same experience. Suppose the idea is of a horse. If one were asked, "What is a horse?" ideas of a horse in familiar situations would present themselves. One may see in imagination a horse being driven, ridden, etc., and he would then answer, "Why, a horse is to ride," or "A horse is to drive," or "A horse is a domestic animal," etc.

Again, "What is a cloud? What is the sun? What is a river? What is justice? What is love?" One says, "A cloud is that from which rain falls," or "A cloud is partially condensed vapor. The sun is a round thing in the sky that shines by day. A river is water flowing along in a low place through the land. Justice is giving to people what they deserve. Love is that feeling one has for a person which makes him be kind to that person." The answer that one gives depends on age and experience.

But it is evident that when a person is asked what a thing is or what is the meaning of a thing, he has at once ideas that have been most closely associated with the idea in question. Now, since the most important aspect of a thing is what we can do with it, what use it can be to us, usually meaning centers about use. A chair is to sit in, bread is to eat, water is to drink, clothes are to wear, a hat is a thing to be worn on one's head, a shovel is to dig with, a car is to ride in, etc.

Use is not quite so evident in such cases as the following: "Who was Caesar? Who was Homer? Who is Edison? What was the Inquisition? What were the Crusades?" However, one has, in these cases, very closely associated ideas, and these ideas do center about what we have done with these men and events in our thinking. "Caesar was a warrior. Homer was a writer of epics. Edison is an inventor," etc. These men and events have been presented to us in various situations as standing for various things in the history of the world. And when we think of them, we at once think of what they did, the place they fill in the world. This constitutes their meaning.

It is evident that an idea may have many meanings. And the meaning that may come to us at any particular moment depends upon the situation. A chair, for example, in one situation, may come to mind as a thing to sit in; in another situation, as a thing to stand in the corner and look pretty; in another, a thing to stand on so that one may reach the top shelf in the pantry; in another, a thing to strike a burglar with; in another, a thing to knock to pieces to be used to make a fire.

The meaning of a thing comes from our experience with it, and the thing usually comes to have more and more meanings as our experience with it increases. When we meet something new, it may have practically no meaning. Suppose we find a new plant in the woods. It has little meaning. We may be able to say only that it is a plant, or it is a small plant. We touch it and it pricks us, and it at once has more meaning. It is a plant that pricks. We bite into it and find it bitter. It is then a plant that is bitter, etc. In such a way, objects come to have meaning. They acquire meaning according to the connections in which we experience them and they may take on different meanings for different persons because of the different experiences of these persons. The chief interest we have in objects is in what use we can make of them, how we can make them serve our purposes, how we can make them contribute to our pleasure.

The organization of experience is the connecting, through the process of association, of the ideas that arise out of our experience. Our ideas are organized not only in accordance with the way we experience them in the first place, but in accordance with the way we think them later in memory. Of course, ideas are recalled in accordance with the way we experience them, but since they are experienced in such a multitude of connections, they are recalled later in these various connections and it is possible in recall to repeat one connection to the exclusion of others.

Organization can therefore be a selective process. Although "horse" is experienced in a great variety of situations or connections, for our purposes we can select some one or more of these connections and by repetition in recalling it, strengthen these connections to the exclusion of others. Herein lies one of the greatest possibilities in thinking and reasoning, which enables us, to an extent, to be independent of original experience. We must have had experience, of course, but the strength of bonds between ideas need not depend upon original experience, but rather upon the way in which these ideas are recalled later, and especially upon the number of times they are recalled.

It is in the matter of the organization of experience that teachers and parents can be of great help to young people. Children do not know what connections of ideas will be most useful in the future. People who have had more experience know better and can, by direction and suggestion, lead the young to form, and strengthen by repetition, those connections of ideas that will be most useful later.

In the various school studies, a mass of ideas is presented. These ideas, isolated or with random connections, will be of little service to the pupils. They must be organized with reference to future use. This organization must come about through thinking over these ideas in helpful connections. The teacher knows best what these helpful connections are and must help the pupil to make them.

Suppose the topic studied in history is the Battle of Bunker Hill. The teacher should assist the child to think the battle over in many different connections. There are various geographical, historical, and literary aspects of the battle that are of importance. These aspects should be brought to mind and related by being thought of together. Thinking things together binds them together as ideas; and later when one idea comes, the others that have been joined with it in the past in thought, come also. Therefore, in studying the Battle of Bunker Hill, the pupil not only reads about it, but gets a map and studies the geography of it, works out the causes that led up to the battle, studies the consequences that followed, reads speeches and poems that have been made and written since concerning the battle, the monument, etc.

Similarly, all the topics studied in school should be thought over and organized with reference to meaning and with reference to future use. As a result of such procedure, all the topics become organized and crystallized, with all related ideas closely bound together in association.

One of the greatest differences in people is in the organization of their ideas. Of course, people differ in original experience, but they differ more in the way they organize this experience and prepare it for future needs. Just as in habit-formation we should by exercise and practice acquire those kinds of skill that will serve us best in the future, so in getting knowledge we should by repetition strengthen the connections between those ideas that we shall need to have connected in the future. All education looks forward and is preparatory. As a result of training in the organization of ideas, a pupil can learn how to organize his experience, in a measure, independent of the teacher. He learns to know, himself, what ideas are significant, and what connections of ideas will be most helpful. Such an outcome should be one of the ends of school training.

Training in Reasoning. We have already mentioned ways in which a child can be helped in gaining power and facility in reasoning. In this paragraph we shall discuss the matter more fully. There are three aspects of training in reasoning, one with reference to original experience, one with reference to the organization of this experience as just discussed, and one with reference to certain habits of procedure in the recall and use of experience.

(1) Original experience. Before reasoning in any field, one must have experience in that field. There is no substitute for experience. After having the experience, it can be organized in various ways, but experience there must be. Experience may be primary, with things themselves, or it may be secondary, received second hand through books or through spoken language. We cannot think without ideas, and ideas come only through perceptions of one kind or another.

Originally, all experience arises out of sensations. Language makes it possible for us to profit through the perceptual experience of others. But even when we receive our experience second hand, our own primary experience must enable us to understand the meaning of what we read and hear about, else it is valueless to us. Therefore, if we wish to be able to reason in the field of physics, of botany, of chemistry, of medicine, of law, or of agriculture, we must get experience in those fields. The raw material of thought comes only through experience. In such a subject as physical geography, for example, the words of the book have little meaning unless the child has had original experience in the matter discussed. He must have seen hills and valleys and rivers and lakes and rocks and weathering, and all the various processes discussed in physical geography; otherwise, the reading of the text is almost valueless. The same thing is true of all subjects. To reason in any subject we must have had original experience in it.

(2) The organization of experience. After experience comes its organization. This point has already been fully explained. It was pointed out that organization consists in thinking our experience over again in helpful relations. Here parents and teachers can be of very great service to children.

(3) Habits of thought. There are certain habits of procedure in reasoning, apart from the association of the ideas. One can form the habit of putting certain questions to oneself when a problem is presented, so that certain types of relations are called up. If one is a scientist, one looks for causes. If one is a lawyer, one looks up the court decisions. If one is a physician, one looks for symptoms, etc.

One of the most important habits in connection with reasoning is the habit of caution. Reasoning is waiting, waiting for ideas to come that will be adequate for the situation. One must form the habit of waiting a reasonable length of time for associations to run their course. If one act too soon, before his organized experience has had time to pass in review, he may act improperly. Therefore one must be trained to a proper degree of caution. Of course, caution may be overdone. One must act sometime, one cannot wait always.

Another habit is that of testing out a conclusion before it is finally put into practice. It is often possible to put a conclusion to some sort of test before it is put to the real test, just as one makes a model and tries out an invention on a small scale. One should not have full confidence in a conclusion that is the result of reasoning, till the conclusion has been put to the final test of experiment, of trial.

This last statement leads us to the real function of reasoning. Reason points the way to action in a new situation. After the situation is repeated for a sufficient number of times, action passes into the realm of habit.

Language and Thinking. The fact that man has spoken and written language is of the greatest significance. It has already been pointed out that language is a means through which we can get experience secondhand. This proves to be a great advantage to man. But language gives us still another advantage. Without language, thinking is limited to the passing of sensory images that arise in accordance with the laws of association. But man can name things and the attributes of things, and these names become associated, so that thinking comes to be, in part at least, a matter of words. Thinking is talking to oneself. One cannot talk without language.

The importance that attaches to language can hardly be overestimated. When the child acquires the use of language, he has acquired the use of a tool, the importance of which to thinking is greater than that of any other tool. Now, one can think without language, in the sense that memory images come and go,—we have defined thinking as the flow of imagery, the passing or succession of ideas. But after we have named things, thinking, particularly reasoning, becomes largely verbal, or as we said above, talking to oneself.

Not only do we give names to concrete things but we give names to specific attributes and to relations. As we organize and analyze our experiences, there appear uniformities, principles, laws. To these we give names, such as white, black, red, weight, length, thickness, justice, truth, sin, crime, heat, cold, mortal, immortal, evolution, disintegration, love, hate, envy, jealousy, possible, impossible, probable, etc. We spoke above of meanings. To meanings we give names, so that a single word comes to stand for meanings broad and significant, the result of much experience. Such words as "evolution" and "gravitation," single words though they are, represent a wide range of experiences and bring these experiences together and crystallize them into a single expression, which we use as a unit in our thought.

Language, therefore, makes thought easier and its accomplishment greater. After we have studied Caesar for some years, the name comes to represent the epitome, the bird's-eye view of a great man. A similar thing is true of our study of other men and movements and things. Single words come to represent a multitude of experiences. Then these words become associated and organized in accordance with the principles of association discussed above, so that it comes about that the older we are, the more we come to think in words, and the more these words represent. The older we are, the more abstract our thinking becomes, the more do our words come to stand for meanings and attributes and laws that have come out of the organization of our experience.

It is evident that the accuracy of our thinking depends upon these words standing for the truth, depends upon whether we have organized our experience in accordance with facts. If our word "Caesar" does not stand for the real Caesar, then all our thinking in which Caesar enters will be incorrect. If our word "justice" does not stand for the real justice, then all our thinking in which justice enters will be incorrect.

This discussion points to the tremendous importance of the organization of experience. Truth is the agreement of our thought with the thing, with reality. We must therefore help the young to see the world clearly and to organize what they see in accordance with the facts and with a view to future use. Then the units of this organized experience are to be tagged, labeled, by means of words, and these words or labels become the vehicles of thought, and the outcome of the thinking depends on the validity of the organization of our experience.

SUMMARY. Thinking is the passing of ideas in the mind; its basis is in the association of memory ideas. The basis of association is in original experience, ideas becoming bound together in memory as originally experienced. The factors of association are primacy, recency, frequency, intensity, and mental set or attitude. Reasoning is thinking to a purpose. We can be trained in reasoning by being taught to get vivid experience in the first place and in organizing this experience in helpful ways, having in mind future use.

CLASS EXERCISES

1. A series of experiments should be performed to make clear to the students that the basis of the association of ideas is in experience and not in the nature of the ideas themselves.

(a) Let the students, starting with the same word, write down all the ideas that come to mind in one minute. The teacher should give the initial idea, as sky, hate, music, clock, table, or wind. The first ten ideas coming to each student might be written on the blackboard for study and comparison. Are any series alike? Is the tenth idea in one series the same as that in any other?

(b) For a study of the various factors of association, perform the following experiment: Let the teacher prepare a list of fifty words—nouns and adjectives, such as wood, murder, goodness, bad, death, water, love, angel. Read the words to the class and let each student write down the first idea that comes to mind in each case. After the list is finished, let each student try to find out what the determining factor was in each case, whether primacy, frequency, recency, vividness, or mental set. When the study is completed, the student's paper should contain three columns, the first column showing the stimulus words, the second showing the response words, the third showing the determining factors. The first column should be dictated and copied after the response words have been written.

(c) Study the data in (a) and (b), noting the variety of ideas that come to different students for the same stimulus word. It will be seen that they come from a great variety of experiences and from all parts of one's life from childhood to the present, showing that all our experiences are bound together and that we can go from one point to any other, directly or indirectly.

2. Perform an experiment to determine how each member of the class thinks, i.e. in what kind of imagery. Let each plan a picnic in detail. How do they do it? Do they see it or hear it or seem to act it? Or does it happen in words merely?

3. Think of the events of yesterday. How do they come to you? Do your images seem to be visual, auditory, motor, or verbal? Do you seem to have all kinds of imagery? Is one kind predominant?

4. Test the class for speed of free association as described on page 193. Repeat the experiment at least five times and rank the members of the class from the results.

5. Similarly, test speed for controlled association as described on page 195 and rank the members of the class.

6. Compare the rankings in Nos. 4 and 5.

7. The teacher can extend the controlled association tests by preparing lists that show different kinds of logical relations with one another, from genus to species, from species to genus, from verb to object, from subject to verb, etc. Do the students maintain the same rank in the various types of experiments? Do the ranks in these tests correspond to the students' ranks in thinking in the school subjects?

8. At least two series of experiments in reasoning should be performed, one to show the nature of reasoning and the other to show the ability of the members of the class.

(a) Put several problems to the class, similar to the following: What happens to a wet board laid out in the sunshine? Explain. Suppose corn is placed in three vessels, 1, 2, and 3. Number 1 is sealed up air tight and kept warm? Number 2 is kept open and warm? Number 3 is kept open and warm and moist. What happens in each case? Explain.

Condensed milk does not sour as long as the can remains unopened. After the can is opened, the milk sours if allowed to become warm; it does not sour if kept frozen. Why? Two bars of metal are riveted together. One bar is lead, the other iron. What happens when the bars are heated to 150 C? 500 C? 1000 C? 2000 C? Answer the following questions: Is it ever right to steal? To kill a person? To lie? Which are unwise and mistaken, Republicans or Democrats?

In the above, do all come to the same conclusion? Why? Were any unable to come to a conclusion at all on some questions? Why? Do the experiments make it clear that reasoning is dependent upon experience?

(b) Let the teacher prepare five problems in reasoning well within the experience of the class, and find the speed and accuracy of the students in solving them. Compare the results with those in the controlled association tests. Test the class with various kinds of mechanical puzzles.

9. The students should study several people to ascertain how well those people have their experience organized. Is their experience available? Can they come to the point immediately, or, are they hazy, uncertain, and impractical?

10. It is claimed that we have two types of people, theoretical and practical. This is to some extent true. What is the explanation?

11. From the point of view of No. 10, compare teachers and engineers.

12. If anything will work in theory, will it work in practice?

13. From what you have learned in the chapter and from the experiments, write a paper on training in reasoning.

14. What are the main defects of the schools with reference to training children to think?

15. Make a complete outline of the chapter.

REFERENCES FOR CLASS READING

COLVIN and BAGLEY: Human Behavior, Chapters XVI and XVIII.

DEWEY: How We Think, Parts I and III.

MUeNSTERBERG: Psychology, General and Applied, Chapters VIII and XII; also pp. 192-195.

PILLSBURY: Essentials of Psychology, Chapters VI and IX.

PYLE: The Outlines of Educational Psychology, Chapter XV.

TITCHENER: A Beginner's Psychology, Chapters V, VI, and X.



CHAPTER IX

INDIVIDUAL DIFFERENCES

Physical Differences. One never sees two people whose bodies are exactly alike. They differ in height or weight or color of the skin. They differ in the color of the hair or eyes, in the shape of the head, or in such details as size and shape of the ear, size and shape of the nose, chin, mouth, teeth, feet, hands, fingers, toes, nails, etc. The anatomist tells us that we differ internally just as we do externally. While the internal structure of one person has the same general plan as that of another, there being the same number of bones, muscles, organs, etc., there are always differences in detail. We are built on the same plan, i.e. we are made after a common type. We vary, above and below this type or central tendency.

Weight may be taken for illustration. If we should weigh the first thousand men we meet, we should find light men, heavy men, and men of medium weight. There would be few light men, few heavy men, but many men of medium weight. This fact is well shown in diagram by what is known as a curve of distribution or frequency surface, which is constructed as follows: Draw a base line A B, and on this line mark off equal distances to represent the various weights. At the left end put the number representing the lightest men and at the right the number representing the heaviest men; the other weights come in between in order. Then select a scale; we will say a millimeter in height above the base line represents one person of the weight represented on the base, and in drawing the upper part of the figure, A C B, we have but to measure up one millimeter for each person weighed, of the weight indicated below on the base.



A study of this frequency surface shows a tendency for people to be grouped about the central tendency or average. There are many people of average weight or nearly so, but few people who deviate widely from the average weight. If we measure people with reference to any other physical characteristic, or any mental characteristic, we get a similar result, we find them grouped about an average or central tendency.

Mental Differences. Just as we differ physically, so also we differ mentally, and in the various aspects of our behavior. The accompanying diagram (Free Association) shows the distribution of a large number of men and women with respect to the speed of their flow of ideas. When men and women are measured with respect to any mental function, a similar distribution is found.



An interesting question is whether our mental differences have any relation or connection with one another. If one mental characteristic is of high order, are all the others of high order also? Does a good memory indicate a high order of attention, of association, of imagination, of learning capacity? Experiments show that mental characteristics have at least some degree of independence. But the rule is that they generally go together, a high order of ability in one mental function indicating a high order of ability in at least some others, and a low order of ability in one function indicating a low order in other functions.

However, it seems that abilities that are very much specialized, such as musical ability, artistic ability, etc., may exist in high order while other mental functions may be only mediocre. It is a common thing for a musical person to be of rather poor ability otherwise. To the extent that special abilities require specialized differences in the structure of brain, nervous system, or sense organ, they can exist in some degree of independence of other functions. Musical ability to some extent does require some such differences and may therefore be found either with a high or a low degree of ability in other characteristics.

It is doubtless true that at maturity the unequal power of mental functions in the same person may be partly due to the fact that one function has been exercised and others neglected. A person having very strong musical tendencies is likely to have such a great interest in music that he will think other activities are not worth while, and will consequently neglect these other activities. It will therefore turn out that at maturity the great differences in mental functions in such a person are in part due to exercise of one function and neglect of others. But there can be no doubt that in many cases there are large original, inherited differences, the individual being poor in one aspect of mind and good in others. Feeble-minded people are usually poor in all important aspects of mind. However, one sometimes finds a feeble-minded person having musical or artistic ability, and often such a person has a good rote memory, sometimes a good verbal memory. However, the so-called higher mental functions—logical memory, controlled association, and constructive imagination—are all poor in a feeble-minded person.

Each mental function may be looked upon as in some measure independent; each is found existing in people in varying degrees from zero ability up to what might be called genius ability. The frequency curves in Fig. VI show this. Take rote memory for example. Idiots are found with practically zero ability in rote memory. At the other extreme, we find mathematical prodigies who, after watching a long freight train pass and noting the numbers of the cars, can repeat correctly the number of each car. Rote memory abilities can be found representing every step between these two extremes. This principle of distribution holds true in the case of all mental functions. We find persons practically without them, and others possessing them in the highest order, but most people are grouped about the average ability.

Detecting Mental Differences. It has already been said that mind has many different aspects and that people differ with respect to these aspects. Now let us ask how we can measure the degree of development of these aspects or functions of mind. We measure them just as we measured muscular speed as described in the first chapter. Each mental function means ability to do something—to learn, to remember, to form images, to reason, etc. To measure these different capacities or functions we have but to require that the person under consideration do something, as learn, remember, etc., and measure how well and how fast he does it, just as we would measure how far he can jump, how fast he can run, etc.

In such measurements, the question of practice is always involved. If we measure running ability, we find that some are in practice while others are not. Those in practice can run at very nearly their ultimate capacity. Those who are not in practice can be trained to run much faster than they do. To get a true measure of running capacity, we should practice the persons to be measured till each runs up to the limit of his capacity, and then measure each one's speed. The same thing is true, to some extent, when we come to measure mental functions proper. However, the life that children live gives exercise to all fundamental functions of the mind, and unless some of the children tested have had experience which would tend to develop some mental functions in a special way, tests of the various aspects of learning capacity, memory, association, imagination, etc., are a fairly good measure of original, inherited tendencies.

Of course, it must be admitted that there are measurable differences in the influence of environment on children, and when these differences are extreme, no doubt the influence is shown in the development of the child's mind. A child reared in a home where all the influences favor its mental development, ought to show a measurable difference in such development when compared with a child reared in a home where all the influences are unfavorable. It is difficult to know to what extent this is true, for the hereditary and environmental influences are usually in harmony, the child of good hereditary stock having good environmental influences, and vice versa. When this is not the case, i.e. when a child of good stock is reared under poor environmental influences, or when a child of poor stock is reared under good influences, the results seem to show that the differences in environment have little effect on mental development, as far as the fundamental functions are concerned, except in the most extreme cases.

Each mental function is capable of some development. It can be brought up to the limit of its possibilities. But recent experiments indicate that such development is not very great in the case of the elementary, fundamental functions. Training, however, has a much greater effect on complex mental activities that involve several functions. Rote memory is rather simple; it cannot be much affected by training. The memory for ideas is more complex; it can be considerably affected by training. The original and fundamental functions of the mind depend upon the nature of the nervous system which is bequeathed to us by heredity. This cannot be much changed. However, training has considerable effect on the cooerdinations and combinations of mental functions. Therefore, the more complex the mental activities which we are testing, the more likely they are to have been affected by differences in experience and training.

If we should designate the logical memory capacity of one person by 10, and that of another by 15, by practice we might bring the first up to 15 and the second to 221/2, but we could not equalize them. We could never make the memory of the one equal to that of the other. In an extreme case, we might find one child whose experience had been such that his logical memory was working up to the limit of its capacity, while the other had had little practice in logical memory and was therefore far below his real capacity. In such a case, a test would not show the native difference, it would show only the present difference in functioning capacity.

Fairly adequate tests for the most important mental functions have been worked out. A series of group tests with directions and norms follow. The members of the class can use these tests in studying the individual differences in other people. The teacher will find other tests in the author's Examination of School Children, and in Whipple's Manual of Mental and Physical Tests.

MENTAL TESTS

GENERAL DIRECTIONS

The results of the mental tests in the school will be worse than useless unless the tests are given with the greatest care and scientific precision. Every test should be most carefully explained to the children so that they will know exactly what they are to do. The matter must be so presented to them that they will put forth all possible effort. They must take the tests seriously. Great care must be taken to see that there is no cheating. The work of each child should be his own work. In those tests in which time is an important element, the time must be carefully kept, with a stop watch if one is available. The papers should be distributed for the tests and turned face downward on the pupil's desk. The pupil, when all are ready to begin, should take the paper in his hand and at the signal "begin" turn it over and begin work, and when the signal "stop" is given, should quit work instantly and turn the paper over. Before the work begins, the necessary information should be placed on each paper. This information should be the pupil's name, age, grade, sex, and school. This should be on every paper. When the test is over the papers should be immediately collected.

LOGICAL MEMORY

Object. The purpose of this test is to determine the pupil's facility in remembering and reproducing ideas. A pupil's standing in the test may serve as an indication of his ability to remember the subject matter of the school studies.



Method. The procedure in this test is for the teacher to read slowly and distinctly the story to be reproduced. Immediately after the reading the pupils are to write down all of the story that they can recall. They must not begin to write till after the reading. Ten minutes should be allowed for the reproduction. This is ample time, and each pupil should be told to use the whole time in working on his reproduction. At the end of ten minutes, collect the papers. Care should be taken to see that each pupil does his own work, that there is no copying. Before reading the story, the teacher should give the following instructions:

I shall read to you a story entitled "Willie Jones and His Dog" (or "A Farmer's Son," or "A Costly Temper," as the case may be). After I have read the story you are to write down all you can remember of it. You are not to use the exact words that I read unless you wish. You are to use your own words. Try to recall as much as possible and write all you recall. Try to get all the details, not merely the main facts.

Material. For grades three, four, and five, use "Willie Jones and His Dog"; for grades six, seven, and eight, use "A Farmer's Son"; for the high school, use "A Costly Temper." The norms for the latter are based on eighth grade and high school pupils.

* * * * *

WILLIE JONES AND HIS DOG

Willie Jones was a little boy only five years old. He had a dog whose name was Buster. Buster was a large dog with long, black, curly hair. His fore feet and the tip of his tail were white. One day Willie's mother sent him to the store which was only a short distance away. Buster went with him, following behind. As Buster was turning at the corner, a car struck him and broke one hind leg and hurt one eye. Willie was very sorry and cried a long time. Willie's father came and carried the poor dog home. The broken leg got well in five weeks but the eye that was hurt became blind.

A FARMER'S SON

Will was a farmer's son who attended school in town. His clothes were poor and his boots often smelled of the farmyard although he took great care of them. Since Will had not gone to school as much as his classmates, he was often at a disadvantage, although his mind was as good as theirs, in fact, he was brighter than most of them. James, the wit of the class, never lost an opportunity to ridicule Will's mistakes, his bright red hair, and his patched clothes. Will took the ridicule in good part and never lost his temper. One Saturday as Will was driving his cows to pasture, he met James teasing a young child, a cripple. Will's indignation was aroused by the sight. He asked the bully to stop, but when he would not, Will pounced upon him and gave him a good beating, and he would not let James go until he promised not to tease the crippled child again.

A COSTLY TEMPER

A man named John Murdock had a servant who worried him much by his stupidity. One day when this servant was more stupid than usual, the angry master of the house threw a book at his head. The servant ducked and the book flew out of the window.

"Now go and pick that book up!" ordered the master. The servant started to obey, but a passerby had saved him the trouble, and had walked off with the book. The scientist thereupon began to wonder what book he had thrown away, and to his horror, discovered that it was a quaint and rare little volume of poems, which he had purchased in London for fifty dollars.

But his troubles were not over. The weeks went by and the man had almost forgotten his loss, when, strolling into a secondhand bookshop, he saw, to his great delight, a copy of the book he had lost. He asked the price.

"Well," said the dealer, reflectively, "I guess we can let you have it for forty dollars. It is a very rare book, and I am sure that I could get seventy-five dollars for it by holding on a while."

The man of science pulled out his purse and produced the money, delighted at the opportunity of replacing his lost treasure. When he reached home, a card dropped out of the leaves. The card was his own, and further examination showed that he had bought back his own property.

"Forty dollars' worth of temper," exclaimed the man. "I think I shall mend my ways." His disposition afterward became so good that the servant became worried, thinking the man must be ill.

* * * * *



The Results. The material for the test is divided into units as indicated by the vertical lines. The pupil's written reproduction should be compared unit by unit with the story as printed, and given one credit for each unit adequately reproduced. The norms for the three tests are shown in the accompanying Figures VII, VIII, and IX. In these and all the graphs which follow, the actual ages are shown in the first horizontal column. The norms for girls appear in the second horizontal column, the norms for boys in the column at the bottom. By the norm for an age is meant the average performance of all the pupils of that age examined. Age ten applies to those pupils who have passed their tenth birthday and have not reached their eleventh birthday, and the other ages are to be similarly interpreted. The vertical lines in the graphs indicate birthdays and the scores written on these lines indicate ability at these exact ages. The column marked ten, for example, includes all the children that are over ten and not yet eleven. The graphs show the development from age to age. In general, it will be noticed, there is an improvement of memory with age, but in the high school, in the "Costly Temper" test, there is a decline. This may not indicate a real decline in ability to remember ideas, but a change in attitude. The high school pupil probably acquires a habit of remembering only significant facts. His memory is selective, while in the earlier ages, the memory may be more parrot-like, one idea being reproduced with about as much fidelity as another. This statement is made not as a fact, but as a probable explanation.

ROTE MEMORY



Object. The object of the rote memory tests is to determine the pupil's memory span for unrelated impressions—words that have no logical relations with one another. Much school work makes demands upon this ability. Therefore, the tests are of importance.

Method. There are two lists of words, concrete and abstract, with six groups in each list. The list of concrete words should be given first, then the abstract. The procedure is to pronounce the first group, cat, tree, coat, and then pause for the pupils to write these three words. Then pronounce the next group, mule, bird, cart, glass, and pause for the reproduction, and so on through the list.



Give the following instructions:

We wish to see how well you can remember words. I shall pronounce first a group of three words. After I have pronounced them, you are to write them down. I shall then pronounce a group of four words, then one of five words, and so continue with a longer group each time. You must pay very close attention for I shall pronounce a group but once. You are not required to write the words in their order, but just as you recall them.

Material. The words for the test are given in the following lists:

Concrete Abstract

1. cat, tree, coat 1. good, black, fast 2. mule, bird, cart, glass 2. clean, tall, round, hot 3. star, horse, dress, fence, man 3. long, wet, fierce, white, cold 4. fish, sun, head, door, shoe, 4. deep, soft, quick, dark, great, block dead 5. train, mill, box, desk, oil, 5. sad, strong, hard, bright, pup, bill fine, glad, plain 6. floor, car, pipe, bridge, hand, 6. sharp, late, sour, wide, rough, dirt, cow, crank thick, red, tight



Results. The papers are graded by determining the number of concrete words and the number of abstract words that are reproduced. No account is taken of whether the words are in the right position or not. A perfect score in each test would therefore be thirty-three. The norms are shown in Figures X and XI.

THE SUBSTITUTION TEST

Object. This test determines one's ability to build up new associations. It is a test of quickness of learning.

Method. The substitution test-sheets are distributed to the pupils and turned face down on the desks. The teacher gives the following instructions:

We wish to see how fast you can learn. At the top of the sheet which has been distributed to you there is a key. In nine circles are written the nine digits and for each digit there is written a letter which is to be used instead of the digit. Below the key are two columns of numbers; each number contains five digits. In the five squares which follow the number you are to write the letters which correspond to the digits. Work as fast as you can and fill as many of the squares as you can without making mistakes. When I say "stop," quit work instantly and turn the paper over.

Before beginning the test the teacher should explain on the blackboard the exact nature of the test. This can be done by using other letters instead of those used in the key. Make sure that the pupils understand what they are to do. Allow eight minutes in grades three, four, and five, and five minutes above the fifth grade.

Material. For material, use the substitution test-sheets. This and the other test material can be obtained from the University of Missouri, Extension Division.

Results. In grading the work, count each square correctly filled in as one point, and reduce the score to speed per minute by dividing by eight in grades three, four, and five, and by five in the grades above.

The norms are shown in Figure XII.



FREE ASSOCIATION

Object. This test determines the speed of the free flow of ideas. The result of the test is a criterion of the quickness of the flow of ideas when no restriction or limitation is put on this flow.

Method. The procedure in this test is to give the pupils a word, and tell them to write this word down and all the other words that come into their minds. Make it clear to them that they are to write whatever word comes to mind, whether it has any relation to the word that is given them or not. Start them with the word "cloud." Give the following instructions:

I wish to see how many words you can think of and write down in three minutes. I shall name a word, you may write it down and then all the other words that come into your minds. Do not write sentences, merely the words that come into your minds. Work as fast as you can.



Results. Score the work by counting the number of words that have been written. The norms are shown in Figure XIII.

OPPOSITES

Object. This is a test of controlled association. It tests one aspect of the association of ideas. All thinking is a matter of association of ideas. Reasoning is controlled association. The test may therefore be taken as a measure of speed in reasoning.



Method. Distribute the lists of opposites to the pupils and turn them face down on the desks. Use List One in grades three, four, and five, and List Two in grades above. Allow two minutes in grades three, four, and five and one minute in grades above. Give the following instructions:

On the sheets that have been distributed to you are fifty words. After each word you are to write a word that has the opposite meaning. For example, if one word were "far," you could write "near." Work as fast as you can, and when I say "stop" quit work instantly and turn your paper over.

Results. The score is the number of opposites correctly written. The norms are shown in Figure XIV.

OPPOSITES—LIST NO. 1

1. good 18. up 35. before 2. big 19. thick 36. winter 3. rich 20. quick 37. ripe 4. out 21. pretty 38. night 5. sick 22. heavy 39. open 6. hot 23. late 40. first 7. long 24. wrong 41. over 8. wet 25. smooth 42. love 9. yes 26. strong 43. come 10. high 27. dark 44. east 11. hard 28. dead 45. top 12. sweet 29. wide 46. wise 13. clean 30. empty 47. front 14. sharp 31. above 48. girl 15. fast 32. north 49. sad 16. black 33. laugh 50. fat 17. old 34. man

OPPOSITES—LIST NO. 2

1. strong 18. strange 35. fine 2. deep 19. wrong 36. plain 3. lazy 20. quickly 37. sharp 4. seldom 21. black 38. late 5. thin 22. good 39. sour 6. soft 23. fast 40. wide 7. many 24. clean 41. drunk 8. valuable 25. tall 42. tight 9. gloomy 26. hot 43. empty 10. rude 27. long 44. sick 11. dark 28. wet 45. friend 12. rough 29. fierce 46. above 13. pretty 30. great 47. loud 14. high 31. dead 48. war 15. foolish 32. cloudy 49. in 16. present 33. hard 50. yes 17. glad 34. bright

THE WORD-BUILDING TEST

Object. This is a test of a certain type of inventiveness, namely linguistic invention. Specifically, it tests the pupil's ability to construct words using certain prescribed letters.



Method. The pupils are given the letters, a, e, o, m, n, r, and told to make as many words as possible using only these letters. Give the following instructions:

I wish to see how many words you can make in five minutes, using only the letters which I give you. The words must be real English words. You must use only the letters which I give you and must not use the same letter more than once in the same word. You do not, of course, have to use all the letters in the same word. A word may contain one or more letters up to six.

Material. The pupils need only sheets of blank paper.

Results. The score is the number of words that do not violate the rules of the test as given in the instructions. The norms are shown in Figure XV.

THE COMPLETION TEST

Object. This is, to some extent, a test of reasoning capacity. Of course, it is only one particular aspect of reasoning. The pupil is given a story that has certain words omitted. He must read the story, see what it is trying to say, and determine what words, put into the blanks, will make the correct sense. The meaning of the word written in a particular blank must not only make the sentence read sensibly but must fit into the story as a whole. Filling in the blanks in this way demands considerable thought.

Method. Distribute the test-sheets and turn them face down on the desks. Allow ten minutes in all the tests. Give the following instructions:

On the sheets which have been distributed is printed a story which has certain words omitted. You are to put in the blanks the words that are omitted. The words which you write in must give the proper meaning so that the story reads correctly. Each word filled in must not only give the proper meaning to the sentence but to the story as a whole.

Material. Use the completion test-sheets, "Joe and the Fourth of July," for grades three, four, and five; "The Trout" for grades, six, seven, and eight; and "Dr. Goldsmith's Medicine" for the high school.

Results. In scoring the papers, allow one credit for each blank correctly filled. The norms are shown in Figures XVI, XVII, and XVIII. It will be noticed that the boys excel in the "Trout" story. This is doubtless because the story is better suited to them on the ground of their experience and interest.



* * * * *

JOE AND THE FOURTH OF JULY

Joe {ran}[6] errands for {his} mother and {took} care of the {baby} until by the Fourth of July his penny {grew} to be a dime. The day before the Fourth, he {went} down town all by {himself} to get his fire {works}. There were so {many} kinds he hardly knew which to {buy}. The clerk knew that it takes a {long} time to decide, for he had been a {boy} himself not very {long} ago. So he helped Joe to {select} the very best kinds. "When are you going to {fire} them off?" asked the clerk. "I will fire {them} very {early} to-morrow," said the boy. So that night Joe set the {alarm} clock, and the next {morning} got up {early} to fire his firecrackers.

[6] The italicized words and letters are left blank in the test sheets.

THE TROUT

The trout is a fine fish. Once a big trout {lived} in a pool {close} by a spring. He used to {stay} under the bank with {only} his head showing. His wide-open {eyes} shone like jewels. I tried to {catch} him. I would {creep} up to the {edge} of the pool {where} I could see his {bright} eyes looking up.

I {caught} a grasshopper and {threw} it over {to} him. Then there was a {splash} in the water and the grasshopper {was gone}. I {did} this {two} or three times. Each time I {saw} the rush and splash and saw the bait had been {taken}.

So I put the sa{me} bait on my {hook} and {threw} it over into the {water}. But {all} was silent. The fish was an {old} one and had {grown} very wise. I did this {day} after day with the same luck. The trout {knew} there was a {hook} hidden in the bait.



DOCTOR GOLDSMITH'S MEDICINE

This {is} a story of good medicine. Most medicine is {bad} to {take}, but this was so good {that} the sick man {wished} for more.

{One} day a poor woman {went} to Doctor Goldsmith and {asked} him to {go} to see her {sick} husband. "He {is} very sick," she said, "and I {can} not {get} him to eat anything."

{So} Doctor Goldsmith {went} to {see} him. The doctor {saw} at once that the {reason} why the man {could} not eat was {because} he was {so} poor that he had {not} been {able} to buy good food.

Then he {said} to the woman, "{Come} to my house this evening and I will {give you} some {medicine} for your {husband}."

The woman {went} in the evening and the {doctor} gave {her} a small paper box tied {up} tight. "{It} is very heavy," {she} said. "May I {see} what it looks {like}?" "{No}," said the doctor, "{wait} until you get {home}." When she {got} home, and she and {her} husband {opened} the box so that he {could} take the first {dose} of medicine,—what do you think they {saw}? The box was {filled} with silver {money}. {This} was the {good} doctor's medicine.

* * * * *

Importance of Mental Differences. (1) In school work. One of the important results that come from a knowledge of the mental differences in children is that we are able to classify them better. When a child enters school he should be allowed to proceed through the course as fast as his development warrants. Some children can do an eight-year course in six years; others require ten years; still others can never do it. The great majority, of course, can do it in eight years.



Norms for adults, as obtained from university students, are:

TEST MEN WOMEN Substitution Test 29.1 32.2 Rote Memory, Concrete 28.5 28.6 Rote Memory, Abstract 28.4 27.9 Free Association 51.5 49.3 Completion, Dr. Goldsmith's Medicine 48.1 49.0 Word Building 20.5 20.1 Logical Memory, Costly Temper 64.0 69.6



It may be thought that a child's success in school branches is a sufficient measure of his ability and that no special mental measurements are needed. This is a mistake. Many factors contribute to success in school work. Ability is only one of these factors, and should be specially and independently determined by suitable tests. Children may fail in school branches because of being poorly started or started at the wrong time, because of poor teaching, sickness, moving from one school to another, etc. On the other hand, children of poor ability may succeed at school because of much help at home. Therefore special mental tests will help in determining to what extent original mental ability is a factor in the success or failure of the different pupils.

As far as possible, the children of the same grade should have about the same ability; but such is seldom the case. In a recent psychological study of a school system, the author found wide differences in ability in the same grade. The distribution of abilities found in the fourth grade and in the high school are shown in Figure XIX. It will be seen that in the fourth grade pupils are found with ability equal to that of some in the high school. Of course to some extent such a condition is unavoidable, for a pupil must establish certain habits and acquire certain knowledge before passing from one grade to another. However, much of the wide variation in ability now found in the same grade of a school could be avoided if the teacher had accurate knowledge of the pupils' abilities. When a teacher learns that a child who is doing poorly in school really has ability, she is often able to get from that pupil the work of which he is capable. It has been demonstrated by experience that accurate measures of children's abilities are a great help in gradation and classification.

A knowledge of mental differences is also an aid in the actual teaching of the children. The instance mentioned at the close of the last paragraph is an example. A knowledge of the differences among the mental functions of the same pupil is especially helpful. It has been pointed out that the different mental functions in the same pupil are sometimes unequally developed. Sometimes considerable differences exist in the same pupil with respect to learning capacity, the different aspects of memory, association, imagination, and attention. When a teacher knows of these differences, she can better direct the work of the pupils.

For example, if a pupil have a very poor memory, the teacher can help him by aiding him to secure the advantage that comes from close and concentrated attention, frequent repetitions, logical organization, etc. On the other hand, she can help the brilliant student by preventing him from being satisfied with hastily secured, superficial knowledge, and by encouraging him to make proper use of his unusual powers in going deeper and more extensively into the school subjects than is possible for the ordinary student. In many ways a teacher can be helpful to her pupils if she has an accurate knowledge of their mental abilities.

(2) In life occupations. Extreme variations in ability should certainly be considered in choosing one's life work. Only persons of the highest ability should go into science, law, medicine, or teaching. Many occupations demand special kinds of ability, special types of reaction, of attention, imagination, etc. For example, the operation of a telephone exchange demands a person of quick and steady reaction. The work of a motorman on a street car demands a person having the broad type of attention, the type of attention that enables one to keep in mind many details at the same time. Scientific work demands the type of concentrated attention. As far as it is possible, occupations demanding special types of ability should be filled by people possessing these abilities. It is best for all concerned if each person is doing what he can do best. It is true that many occupations do not call for special types of ability. And therefore, as far as ability is concerned, a person could do as well in one of these occupations as in another. The time will sometime come when we shall know the special abilities demanded by the different occupations and professions, and by suitable tests shall be able to determine what people possess the required qualifications.

The schools should always be on the lookout for unusual ability. Children that are far superior to others of the same age should be allowed to advance as fast as their superior ability makes possible, and should be held up to a high order of work. Such superior people should be, as far as possible, in the same classes, so that they can the more easily be given the kind and amount of work that they need. The schools should find the children of unusual special ability, such as ability in drawing, painting, singing, playing musical instruments, mechanical invention, etc. Some provision should be made for the proper development and training of these unusual abilities. Society cannot afford to lose any spark of genius wherever found. Moreover, the individual will be happier if developed and trained along the line of his special ability.

Subnormal Children. A small percentage of children are of such low mentality that they cannot do the ordinary school work. As soon as such children can be picked out with certainty, they should be taken out of the regular classes and put into special classes. It is a mistake to try to get them to do the regular school work. They cannot do it, and they only waste the teacher's time and usually give her much trouble. Besides, they waste their own time; for while they cannot do the ordinary school work, they can do other things, perhaps work of a manual nature. The education of such people should, therefore, be in the direction of simple manual occupations.

For detecting such children, in addition to the tests given above, elaborate tests for individual examination have been devised. The most widely used is a series known as the Binet-Simon tests. A special group of tests is provided for the children of each age. If a child can pass the tests for his age, he is considered normal. If he can pass only the tests three years or more below his age, he is usually considered subnormal. But a child's fate should not depend solely upon any number or any kind of tests. We should always give the child a trial and see what he is able to achieve. This trial should cover as many months or years as are necessary to determine beyond doubt the child's mental status.

SUMMARY. Just as we differ in the various aspects of body, so also we differ in the various aspects of mind. These differences can be measured by tests. A knowledge of these differences should aid us in grading, classifying, and teaching children, as well as in the selection of occupation and professions for them. Mental traits have some degree of independence; as a result a high degree of one trait may be found with low degree of some others.

CLASS EXERCISES

1. Many of the tests and experiments already described should have shown many of the individual differences of the members of the class. The teacher will find in the author's Examination of School Children a series of group tests with norms which can be used for a further study of individual differences.

2. The tapping experiment described in the first chapter can now be repeated and the results taken as a measure of reaction time.

3. You should now have available the records of all the tests and experiments so far given that show individual differences. Make out a table showing the rank of each student in the various tests. Compute the average rank of each student for all the tests. This average rank may be taken as a measure of the intelligence of the students, as far as such can be determined by the tests used. Correlate this ranking with standing in the high school classes. It will give a positive correlation, not perfect, however. Why not? If your measures of intelligence were absolutely correct, you still would not get a perfect correlation with high school standing. Why not?

4. If you had a correct measure of intelligence of 100 mature people in your city, selected at random, would this measure give you an exact measure of their success in life? Give the reason for your answer.

5. Of all the tests and experiments previously described in this book, which gives the best indication of success in high school?

6. If the class in psychology is a large one, a graph should be prepared showing the distribution of abilities in the class. For this purpose, you will have to use the absolute measures instead of ranks. Find the average for each test used. Make these averages all the same by multiplying the low ones and dividing the high ones. Then all the grades of each student can be added. This will give each test the same weight in the average. The use of a slide rule will make this transference to a new average very easy. A more accurate method for this computation is described in the author's Examination of School Children, p. 65.

The students should make a study of individual differences and the distribution of ability in some grade below the high school. The tests described in this chapter can be used for that purpose.

7. Is it a good thing for high school students to find out how they compare with others in their various mental functions? If you have poor ability, is it a good thing for you to find it out? If the teacher and students think best, the results of all the various tests need not be made known except to the persons concerned. The data can be used in the various computations without the students' knowing whose measures they are.

8. To what extent is ability a factor in life? You find people of only ordinary ability succeeding and brilliant people failing. Why is this?

9. None of the tests so far used measures ideals or perseverance and persistence. These are important factors in life, and there is no very adequate measure for any of them. The students might plan some experiments to test physical and mental persistence and endurance. The tapping experiment, for example, might be continued for an hour and the records kept for each minute. Then from these records a graph could be plotted showing the course of efficiency for the hour. Mental adding or multiplying might be kept up continuously for several hours and the results studied as above.

10. We have said that ideals and persistence are important factors in life. Are they inherited or acquired?

11. Do you find it to be the rule or the exception for a person standing high in one mental function to stand high in the others also?

12. Make a complete outline of the chapter.

REFERENCES FOR CLASS READING

MUeNSTERBERG: Psychology, General and Applied. Chapter XVI.

PYLE: The Examination of School Children.

PYLE: The Outlines of Educational Psychology. Chapter XVII.

TITCHENER: A Beginner's Psychology, pp. 309-311.



CHAPTER X

APPLIED PSYCHOLOGY

The General Field. Psychology has now reached that stage in its development where it can be of use to humanity. It can be of use in those fields which demand a knowledge of human nature. As indicated in the first chapter, these fields are education, medicine, law, business, and industry. We may add another which has been called "culture." We cannot say that psychology is able yet to be of very great service except to education, law, and medicine. It has been of less service to the field of business and industry, but in the future, its contribution here will be as great as in the other fields. While the service of psychology in the various fields is not yet great, what it will eventually be able to do is very clear. It is the purpose of this chapter to indicate briefly, the nature and possibilities of this psychological service.

Education. Throughout the preceding chapters, we have emphasized the educational importance of the facts discussed. There is little left to say here except to summarize the main facts. Since education is a matter of making a child over into what he ought to be, the science of education demands a knowledge of the original nature of children. This means that one must know the nature of instincts, their relations to one another, their order of development, and the possibilities of their being changed, modified, developed, suppressed. It means that one must know the nature of the child's mind in all its various functions, the development and significance of these functions,—memory, association, imagination, and attention. The science especially demands that we understand the principles of habit-formation, the laws of economical learning, and the laws of memory.

This psychological knowledge must form the ground-work in the education of teachers for their profession. In addition to this general preparation of the teacher, psychology will render the schools a great service through the psycho-clinicist, who will be a psychological expert working under the superintendents of our school systems. His duty will be to supervise the work of mental testing, the work of diagnosis for feeble-mindedness and selection of the subnormal children, the teaching of such children. He will give advice in all cases which demand expert psychological knowledge.

Medicine. In the first place, there is a department of medicine which deals with nervous diseases, such as insanity, double personality, severe nervous shock, hallucination, etc. This entire aspect of medicine is wholly psychological. But psychology can be of service to the general practitioner both in the diagnosis and treatment of disease. A thorough psychological knowledge of human nature will assist a physician in diagnosis. Often the best way to find out what ails a patient's body is through the patient's mind, and the doctor must know how to get the truth from the patient's mind even in those cases in which the patient is actually trying to conceal the truth. A profound practical knowledge of human nature is necessary,—a knowledge which can be obtained only by long and careful technical study as well as practice and experience.

Psychology can be of service in the treatment of disease. The physician must understand the peculiar mental characteristics of his patient in order to know how to deal with him. In some cases, hypnotism is a valuable aid in treatment, and in many cases, ordinary normal suggestion can be of considerable service. The state of mind of a sick person has much to do with his recovery. The physician must know this and must know how to induce the desired state of mind. Indeed, a patient's trouble is often imaginary, exists in the mind only; in such cases, the treatment should be wholly mental, i.e. through suggestion. Of course, the best physicians know these facts and make use of them in their practice, but preparation for this aspect of their work should be a regular part of their medical education. They should not be left to learn these facts from their practice as best they may, any more than they should be expected to learn their physiology and anatomy in this way.

Law. The service of psychology to law can be very great, but owing to the necessary conservatism of the courts, it will be a long time before they will make much use of psychological knowledge. Perhaps the greatest service will be in determining the credibility of evidence. Psychology can now give the general principles in this matter. Witnesses go on the stand and swear to all sorts of things as to what they heard and saw and did, often months and even years previously. The expert clinical psychologist can tell the court the probability of such evidence being true. Experiments have shown that there is a large percentage of error in such evidence. The additional value that comes from the oath has been measured. The oath increases the liability of truth only a small percentage.

Experiments have also shown that one's feeling of certainty is no guarantee of truth. Sometimes the point we feel surest about is the one farthest from the truth. In fact, feeling sure of a thing is no guarantee of truth.

In a particular case in court, the psychologist can determine the reliability of the evidence of a particular witness and enable the judge and the jury to put the proper value on such witness's testimony. For example, a witness may swear to a certain point involving the estimation of time and distance. The psychologist can measure the witness's accuracy in such estimates, often showing that what the witness claims to be able to do is an impossibility. A case may hinge on whether an interval of time was ten minutes or twelve minutes, or whether a distance was three hundred or four hundred feet. A witness may swear positively to one or both of these points. The psychologist can show the court the limitations of the witness in making such estimates.

Psychology can be of service in the examination of the criminal himself. Through association tests and in other ways, the guilt or innocence of the prisoner can often be determined, and his intellectual status can also be determined. The prisoner may be insane, or feeble-minded, or have some other peculiar mental disorder. Such matters fall within the realm of psychology. After a prisoner has been found guilty, the court should have the advice of the clinical psychologist in deciding what should be done with him.

It should be added that the court and not the attorneys should make use of the psychologist. Whenever a psychologist can be of service in a case in court, the judge should summon such assistance, just as he should if expert chemical, physical, physiological, or anatomical knowledge should be desired.

A knowledge of human nature can be of much service to society in the prevention of crime. This will come about from a better knowledge of the psychological principles of habit-formation and moral training, through a better knowledge of how to control human nature. A large percentage of all crime, perhaps as much as forty per cent, is committed by feeble-minded people. Now, if we can detect these people early, and give them the simple manual education which they are capable of receiving, we can keep them out of a life of crime.

Studies of criminals in reform schools show that the history of many cases is as follows: The person, being of low mentality, could not get on well at school and therefore came to dislike school, and consequently became a truant. Truancy led to crime. Crime sent the person to the court, and the court sent the person to the state reformatory.

The great duty of the state is the prevention of crime. Usually little can be done in the way of saving a mature criminal. We must save the children before they become criminals, save them by proper treatment. Society owes it to every child to do the right thing for him, the right thing, whether the child is an idiot or a genius. Merely from the standpoint of economy, it would be an immense saving to the state if it would prevent crime by the proper treatment of every child.

Business. The contribution of psychology in this field, so far, is in the psychology of advertising and salesmanship, both having to do chiefly with the selling of goods. Students of the psychology of advertising have, by experiment, determined many principles that govern people when reading newspapers and magazines, principles having to do with size and kind of type, arrangement and form, the wording of an advertisement, etc. The object of an advertisement is to get the reader interested in the article advertised. The first thing is to get him to read the advertisement. Here, various principles of attention are involved. The next thing is to have the matter of the advertisement of such a nature that it creates interest and remains in memory, so that when the reader buys an article of that type he buys the particular kind mentioned in the advertisement.

In salesmanship, many subtle psychological principles are involved. The problem of the salesman is to get the attention of the customer, and then to make him want to buy his goods. To do this with the greatest success demands a profound knowledge of human nature. Other things being equal, that man can most influence people who has the widest knowledge of the nature of people, and of the factors that affect this nature. The successful salesman must understand human feelings and emotions, especially sympathy; also the laws of attention and memory, and the power of suggestion. A mastery of the important principles requires years of study, and a successful application of them requires just as many years of practice.

The last paragraph leads us to a consideration of the general problem of influencing men. In all occupations and professions, one needs to know how to influence other men. We have already discussed the matter of influencing people to buy goods. People who employ labor need to know how to get laborers to do more and better work, how to make them loyal and happy. The minister needs to know how to induce the members of his congregation to do right. The statesman needs to know how to win his hearers and convince them of the justice and wisdom of his cause. Whatever our calling, there is scarcely a day when we could not do better if we knew more fully how to influence people.

Industry. The service of psychology here is four-fold: (1) Finding what men are fitted for. (2) Finding what kinds of abilities are demanded by the various trades and occupations. (3) Helping the worker to understand the psychological aspects of his work. (4) Getting the best work out of the laborer.

Finding what men are fitted for. In the preceding chapter, we discussed the individual variations of men. Some people are better fitted physically and mentally for certain types of work than they are for other types of work. The determination of what an individual is fitted for and what he is not fitted for is the business of psychology. In some cases, the verdict of psychology can be very specific; in others, it can be only general. Much misery and unhappiness come to people from trying to do what they are not fitted by nature to do. There are many professions and occupations which people should not enter unless they possess high general ability. Now, psychology is able to measure general ability. There are many other occupations and professions which people should not enter unless they possess some special ability. Music, art, and mechanics may be mentioned as examples of occupations and professions demanding specific kinds of ability. In industrial work, many aspects demand very special abilities, as quick reaction, quick perception, fine discrimination, calmness and self-control, ingenuity, quick adaptation to new situations. Psychology can aid in picking out the people who possess the required abilities.

The different abilities demanded. It is the business of psychology to make a careful analysis of the specific abilities required in all the various works of life. There are hundreds of occupations and often much differentiation of work within an occupation. It is for the psychologist of the future to make this analysis and to classify the occupations with reference to the kinds of abilities demanded. Of course, many of them will be found to require the same kind of ability, but just as surely, many will be found to require very special abilities. It is a great social waste to have people trying to fill such positions unless they possess the specific abilities required.

It should be the work of the high school and college to explain the possibilities, and the demands in the way of ability, of the various occupations of the locality. By possibilities and demands are meant the kinds of abilities required and the rewards that can be expected, the kind of life which the different fields offer. It is the further duty of the high school and college to find out, as far as possible, the specific abilities of the students. With this knowledge before them, the students should choose their careers, and then make specific preparation for them. The schools ought to work in close cooeperation with the industries, the student working for a part of the day in school and a part in the industries. This would help much in leading the student to understand the industries and in ascertaining his own abilities and interests.

The psychological aspects of one's work. All occupations have a psychological aspect. They involve some trick of attention, of association, of memory. Certain things must be looked for, certain habits must be formed, certain movements must be automatized. Workmen should be helped to master these psychological problems, to find the most convenient ways of doing their work. Workmen often do their work in the most uneconomical ways, having learned their methods through imitation, and never inquiring whether there is a more economical way.

Securing efficiency. Securing efficiency is a matter of influencing men, a matter which we have already discussed. Securing efficiency is quite a different matter from that treated in the preceding paragraph. A workman may have a complete knowledge of his work and be skilled in its performance, and still be a poor workman, because he does not have the right attitude toward his employer or toward his work. The employer must therefore meet the problem of making his men like their work and be loyal to their employer. The laborer must be happy and contented if he is to do good work. Moreover, there is no use in working, or in living either, if one cannot be happy and contented.

We have briefly indicated the possibilities of psychology in the various occupations and professions. There is a further application that has no reference to the practical needs of life, but to enjoyment. A psychological knowledge of human nature adds a new interest to all our social experience. The ability to understand the actions and feelings of men puts new meaning into the world. The ability to understand oneself, to analyze one's actions, motives, feelings, and thoughts, makes life more worth living. A knowledge of the sensations and sense organs adds much pleasure to life in addition to its having great practical value. Briefly, a psychological knowledge of human nature adds much to the richness of life. It gives one the analytical attitude. Experiences that to others are wholes, to the psychologist fall apart into their elements. Such knowledge leads us to analyze and see clearly what otherwise we do not understand and see only darkly or not at all. Literature and art, and all other creations and products of man take on a wholly new interest to the psychologist.

Previous Part     1  2  3  4  5     Next Part
Home - Random Browse