p-books.com
The Reminiscences of an Astronomer
by Simon Newcomb
Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse

He came to the banquet, he made a speech,—a very good, and not a very short one,—and he remained, an interested hearer, until nearly two o'clock in the morning.

In recent years I cannot avoid a feeling that a change has come over the spirit of such associations. One might gather the impression that the apothegm of Sir William Hamilton needed a slight amendment.

On earth is nothing great but Man, In Man is nothing great but Mind.

Strike out the last word, and insert "Muscle." The reader will please not misinterpret this remark. I admire the physically perfect man, loving everything out of doors, and animated by the spirit that takes him through polar snows and over mountain tops. But I do not feel that mere muscular practice during a few years of college life really fosters this spirit.

Among the former institutions of Washington of which the memory is worth preserving, was the Scientific Club. This was one of those small groups, more common in other cities than in Washington, of men interested in some field of thought, who meet at brief intervals at one another's houses, perhaps listen to a paper, and wind up with a supper. When or how the Washington Club originated, I do not know, but it was probably sometime during the fifties. Its membership seems to have been rather ill defined, for, although I have always been regarded as a member, and am mentioned in McCulloch's book as such, [1] I do not think I ever received any formal notice of election. The club was not exclusively scientific, but included in its list the leading men who were supposed to be interested in scientific matters, and whose company was pleasant to the others. Mr. McCulloch himself, General Sherman, and Chief Justice Chase are examples of the members of the club who were of this class.

It was at the club meetings that I made the acquaintance of General Sherman. His strong characteristics were as clearly seen at these evening gatherings as in a military campaign. His restlessness was such that he found it hard to sit still, especially in his own house, two minutes at a time. His terse sentences, leaving no doubt in the mind of the hearer as to what he meant, always had the same snap. One of his military letters is worth reviving. When he was carrying on his campaign in Georgia against Hood, the latter was anxious that the war should damage general commercial interests as little as possible; so he sent General Sherman a letter setting forth the terms and conditions on which he, Hood, would refrain from burning the cotton in his line of march, but leave it behind,—at as great length and with as much detail as if it were a treaty of peace between two nations. Sherman's reply was couched in a single sentence: "I hope you will burn all the cotton you can, for all you don't burn I will." When he introduced two people, he did not simply mention their names, but told who each one was. In introducing the adjutant-general to another officer who had just come into Washington, he added, "You know his signature."

Mr. McCulloch, who succeeded Mr. Chase as Secretary of the Treasury, was my beau ideal of an administrator. In his personal make-up, he was as completely the opposite of General Sherman as a man well could be. Deliberate, impassive, heavy of build, slow in physical movement, he would have been supposed, at first sight, a man who would take life easy, and concern himself as little as possible about public affairs. But, after all, there is a quality in the head of a great department which is quite distinct from sprightliness, and that is wisdom. This he possessed in the highest degree. The impress which he made on our fiscal system was not the product of what looked like energetic personal action, but of a careful study of the prevailing conditions of public opinion, and of the means at his disposal for keeping the movement of things in the right direction. His policy was what is sometimes claimed, and correctly, I believe, to embody the highest administrative wisdom: that of doing nothing himself that he could get others to do for him. In this way all his energies could be devoted to his proper work, that of getting the best men in office, and of devising measures from time to time calculated to carry the government along the lines which he judged to be best for the public interests.

The name of another attendant at the meetings of the club has from time to time excited interest because of its connection with a fundamental principle of evolutionary astronomy. This principle, which looks paradoxical enough, is that up to a certain stage, as a star loses heat by radiation into space, its temperature becomes higher. It is now known as Lane's Law. Some curiosity as to its origin, as well as the personality of its author, has sometimes been expressed. As the story has never been printed, I ask leave to tell it.

Among the attendants at the meetings of the Scientific Club was an odd-looking and odd-mannered little man, rather intellectual in appearance, who listened attentively to what others said, but who, so far as I noticed, never said a word himself. Up to the time of which I am speaking, I did not even know his name, as there was nothing but his oddity to excite any interest in him.

One evening about the year 1867, the club met, as it not infrequently did, at the home of Mr. McCulloch. After the meeting Mr. W. B. Taylor, afterward connected with the Smithsonian Institution in an editorial capacity, accompanied by the little man, set out to walk to his home, which I believe was somewhere near the Smithsonian grounds. At any rate, I joined them in their walk, which led through these grounds. A few days previous there had appeared in the "Reader," an English weekly periodical having a scientific character, an article describing a new theory of the sun. The view maintained was that the sun was not a molten liquid, as had generally been supposed up to that time, but a mass of incandescent gas, perhaps condensed at its outer surface, so as to form a sort of immense bubble. I had never before heard of the theory, but it was so plausible that there could be no difficulty in accepting it. So, as we wended our way through the Smithsonian grounds, I explained the theory to my companions in that ex cathedra style which one is apt to assume in setting forth a new idea to people who know little or nothing of the subject. My talk was mainly designed for Mr. Taylor, because I did not suppose the little man would take any interest in it. I was, therefore, much astonished when, at a certain point, he challenged, in quite a decisive tone, the correctness of one of my propositions. In a rather more modest way, I tried to maintain my ground, but was quite silenced by the little man informing us that he had investigated the whole subject, and found so and so—different from what I had been laying down.

I immediately stepped down from the pontifical chair, and asked the little man to occupy it and tell us more about the matter, which he did. Whether the theorem to which I have alluded was included in his statement, I do not recall. If it was not, he told me about it subsequently, and spoke of a paper he had published, or was about to publish, in the "American Journal of Science." I find that this paper appeared in Volume L. in 1870.

Naturally I cultivated the acquaintance of such a man. His name was J. Homer Lane. He was quite alone in the world, having neither family nor near relative, so far as any one knew. He had formerly been an examiner or something similar in the Patent Office, but under the system which prevailed in those days, a man with no more political influence than he had was very liable to lose his position, as he actually did. He lived in a good deal such a habitation and surroundings as men like Johnson and Goldsmith lived in in their time. If his home was not exactly a garret, it came as near it as a lodging of the present day ever does.

After the paper in question appeared, I called Mr. Lane's attention to the fact that I did not find any statement of the theorem which he had mentioned to me to be contained in it. He admitted that it was contained in it only impliedly, and proceeded to give me a very brief and simple demonstration.

So the matter stood, until the centennial year, 1876, when Sir William Thomson paid a visit to this country. I passed a very pleasant evening with him at the Smithsonian Institution, engaged in a discussion, some points of which he afterwards mentioned in an address to the British Association. Among other matters, I mentioned this law, originating with Mr. J. Homer Lane. He did not think it could be well founded, and when I attempted to reproduce Mr. Lane's verbal demonstration, I found myself unable to do so. I told him I felt quite sure about the matter, and would write to him on the subject. When I again met Mr. Lane, I told him of my difficulty and asked him to repeat the demonstration. He did so at once, and I sent it off to Sir William. The latter immediately accepted the result, and published a paper on the subject, in which the theorem was made public for the first time.

It is very singular that a man of such acuteness never achieved anything else of significance. He was at my station on one occasion when a total eclipse of the sun was to be observed, and made a report on what he saw. At the same time he called my attention to a slight source of error with which photographs of the transit of Venus might be affected. The idea was a very ingenious one, and was published in due course.

Altogether, the picture of his life and death remains in my memory as a sad one, the brightest gleam being the fact that he was elected a member of the National Academy of Sciences, which must have been to him a very grateful recognition of his work on the part of his scientific associates. When he died, his funeral was attended only by a few of his fellow members of the academy. Altogether, I feel it eminently appropriate that his name should be perpetuated by the theorem of which I have spoken.

If the National Academy of Sciences has not proved as influential a body as such an academy should, it has still taken such a place in science, and rendered services of such importance to the government, that the circumstances connected with its origin are of permanent historic interest. As the writer was not a charter member, he cannot claim to have been "in at the birth," though he became, from time to time, a repository of desultory information on the subject. There is abundant internal and circumstantial evidence that Dr. B. A. Gould, although his name has, so far as I am aware, never been mentioned in this connection, was a leading spirit in the first organization. On the other hand, curiously enough, Professor Henry was not. I was quite satisfied that Bache took an active part, but Henry assured me that he could not believe this, because he was so intimate with Bache that, had the latter known anything of the matter, he would surely have consulted him. Some recent light is thrown on the subject by letters of Rear-Admiral Charles H. Davis, found in his "Life," as published by his son. Everything was carried on in the greatest secrecy, until the bill chartering the body was introduced by Senator Henry Wilson of Massachusetts. Fifty charter members were named, and this number was fixed as the permanent limit to the membership. The list did not include either George P. Bond, director of the Harvard Observatory, perhaps the foremost American astronomer of the time in charge of an observatory, nor Dr. John W. Draper. Yet the total membership in the section of astronomy and kindred sciences was very large. A story to which I give credence was that the original list, as handed to Senator Wilson, did not include the name of William B. Rogers, who was then founding the Institute of Technology. The senator made it a condition that room for Rogers should be found, and his wish was acceded to. It is of interest that the man thus added to the academy by a senator afterward became its President, and proved as able and popular a presiding officer as it ever had.

The governmental importance of the academy arose from the fact that its charter made it the scientific adviser of the government, by providing that it should "investigate, examine, experiment, and report upon any subject of science or art" whenever called upon by any department of the government. In this respect it was intended to perform the same valuable functions for the government that are expected of the national scientific academies or societies of foreign countries.

The academy was empowered to make its own constitution. That first adopted was sufficiently rigid and complex. Following the example of European bodies of the same sort, it was divided into two classes, one of mathematical and physical, the other of natural science. Each of these classes was divided into sections. A very elaborate system of procedure for the choice of new members was provided. Any member absent from four consecutive stated meetings of the academy had his name stricken from the roll unless he communicated a valid reason for his absence. Notwithstanding this requirement, the academy had no funds to defray the traveling expenses of members, nor did the government ever appropriate money for this purpose.

For seven years it became increasingly doubtful whether the organization would not be abandoned. Several of the most eminent members took no interest whatever in the academy,—did not attend the meetings, but did tender their resignations, which, however, were not accepted. This went on at such a rate that, in 1870, to avoid a threatened dissolution, a radical change was made in the constitution. Congress was asked to remove the restriction upon the number of members, which it promptly did. Classes and sections were entirely abandoned. The members formed but a single body. The method of election was simplified,—too much simplified, in fact.

The election of new members is, perhaps, the most difficult and delicate function of such an organization. It is one which cannot be performed to public satisfaction, nor without making many mistakes; and the avoidance of the latter is vastly more difficult when the members are so widely separated and have little opportunity to discuss in advance the merits of the men from whom a selection is to be made. An ideal selection cannot be made until after a man is dead, so that his work can be summed up; but I think it may fairly be said that, on the whole, the selections have been as good as could be expected under the conditions.

Notwithstanding the indifference of the government to the possible benefits that the academy might render it, it has—in addition to numerous reports on minor subjects—made two of capital importance to the public welfare. One of these was the planning of the United States Geological Survey, the other the organization of a forestry system for the United States.

During the years 1870-77, besides several temporary surveys or expeditions which had from time to time been conducted under the auspices of the government, there were growing up two permanent surveys of the territories. One of these was the Geographical Survey of territories west of the 100th meridian, under the Chief of Engineers of the Army; the other was the Geological Survey of the territories under the Interior Department, of which the chief was Professor F. V. Hayden.

The methods adopted by the two chiefs to gain the approval of the public and the favoring smiles of Congress were certainly very different. Wheeler's efforts were made altogether by official methods and through official channels. Hayden considered it his duty to give the public every possible opportunity to see what he was doing and to judge his work. His efforts were chronicled at length in the public prints. His summers were spent in the field, and his winters were devoted to working up results and making every effort to secure influence. An attractive personality and extreme readiness to show every visitor all that there was to be seen in his collections, facilitated his success. One day a friend introduced a number of children with an expression of doubt as to the little visitors being welcome. "Oh, I always like to have the children come here," he replied, "they influence their parents." He was so successful in his efforts that his organization grew apace, and soon developed into the Geological Survey of the Territories.

Ostensibly the objects of the two organizations were different. One had military requirements mainly in view, especially the mapping of routes. Hayden's survey was mainly in the interests of geology. Practically, however, the two covered the same field in all points. The military survey extended its scope by including everything necessary for a complete geographical and geological atlas. The geological survey was necessarily a complete topographical and geological survey from the beginning. Between 1870 and 1877, both were engaged in making an atlas of Colorado, on the maps of which were given the same topographical features and the same lines of communication. Parties of the two surveys mounted their theodolites on the same mountains, and triangulated the same regions. The Hayden survey published a complete atlas of Colorado, probably more finely gotten up than any atlas of a State in the Union, while the Wheeler survey was vigorously engaged in issuing maps of the same territory. No effort to prevent this duplication of work by making an arrangement between the two organizations led to any result. Neither had any official knowledge of the work of the other. Unofficially, the one was dissatisfied with the political methods of the other, and claimed that the maps which it produced were not fit for military purposes. Hayden retorted with unofficial reflections on the geological expertness of the engineers, and maintained that their work was not of the best. He got up by far the best maps; Wheeler, in the interests of economy, was willing to sacrifice artistic appearance to economy of production. We thus had the curious spectacle of the government supporting two independent surveys of the same region. Various compromises were attempted, but they all came to nothing. The state of things was clear enough to Congress, but the repugnance of our national legislature to the adoption of decisive measures of any sort for the settlement of a disputed administrative question prevented any effective action. Infant bureaus may quarrel with each other and eat up the paternal substance, but the parent cannot make up his mind to starve them outright, or even to chastise them into a spirit of conciliation. Unable to decide between them, Congress for some years pursued the policy of supporting both surveys.

The credit for introducing a measure which would certainly lead to unification is due to Mr. A. S. Hewitt, of New York, then a member of the Committee on Appropriations. He proposed to refer the whole subject to the National Academy of Sciences. His committee accepted his view, and a clause was inserted in the Sundry Civil Bill of June 30, 1878, requiring the academy at its next meeting to take the matter into consideration and report to Congress "as soon thereafter as may be practicable, a plan for surveying and mapping the territory of the United States on such general system as will, in their judgment, secure the best results at the least possible cost."

Several of the older and more conservative members of the academy objected that this question was not one of science or art, with which alone the academy was competent to deal, but was a purely administrative question which Congress should settle for itself. They feared that the academy would be drawn into the arena of political discussion to an extent detrimental to its future and welfare and usefulness. Whether the exception was or was not well taken, it was felt that the academy, the creature of Congress, could not join issue with the latter as to its functions, nor should an opportunity of rendering a great service to the government be lost for such a reason as this.

The plan reported by the academy was radical and comprehensive. It proposed to abolish all the existing surveys of the territories except those which, being temporary, were completing their work, and to substitute for them a single organization which would include the surveys of the public lands in its scope. The interior work of the Coast and Geodetic Survey was included in the plan, it being proposed to transfer this bureau to the Interior Department, with its functions so extended as to include the entire work of triangulation.

When the proposition came up in Congress at the following session, it was vigorously fought by the Chief of Engineers of the army, and by the General Land Office, of which the surveying functions were practically abolished. The Land Office carried its point, and was eliminated from the scheme. General Humphreys, the Chief of Engineers, was a member of the academy, but resigned on the ground that he could not properly remain a member while contesting the recommendations of the body. But the academy refused to accept the resignation, on the very proper ground that no obligation was imposed on the members to support the views of the academy, besides which, the work of the latter in the whole matter was terminated when its report was presented to Congress.

Although this was true of the academy, it was not true of the individual members who had taken part in constructing the scheme. They were naturally desirous of seeing the plan made a success, and, in the face of such vigorous opposition, this required constant attention. A dexterous movement was that of getting the measure transferred from one appropriation bill to another when it passed over to the Senate. The measure at length became a law, and thus was established the Geological Survey of the United States, which was to be governed by a Director, appointed by the President, by and with the advice and consent of the Senate.

Then, on March 4, 1879, an important question arose. The right man must be placed at the head of the new bureau. Who is he? At first there seemed to be but one voice on the subject, Professor Hayden had taken the greatest pains to make known the work of his survey, not only to Congress, but to every scientific society, small and great, the world over. Many of these had bestowed their approbation upon it by electing its director to honorary membership. It has been said, I do not know how truly, that the number of these testimonials exceeded that received by any other scientific man in America. If this were so, they would have to be counted, not weighed. It was, therefore, not surprising that two thirds of the members of Congress were said to have sent a recommendation to the President for the appointment of so able and successful a man to the new position. The powerful backing of so respectable a citizen as Hon. J. D. Cox, formerly Secretary of the Interior, was also heartily proffered. To these forces were added that of a certain number of geologists, though few or none of them were leaders in the science. Had it not been for a private intimation conveyed to Secretary Schurz that the scientific men interested might have something to say on the subject, Hayden might have been appointed at the very moment the bill was signed by the President.

Notwithstanding all of Hayden's merits as the energetic head of a survey, the leaders in the movement considered that Mr. Clarence King was the better qualified for the duties of the new position. It is not unlikely that a preference for a different method of influencing Congress than that which I have described, was one of the reasons in favor of Mr. King. He was a man of charming personality and great literary ability. Some one said of him that he could make a more interesting story out of what he saw during a ride in a street car than most men could with the best material at their disposal. His "Mountaineering in the Sierra Nevadas" was as interesting an account of Western exploration as has ever been published. I understand it was suppressed by the author because some of the characters described in it were much hurt by finding themselves painted in the book.

Hopeless though the contest might have seemed, an effort was made by three or four of the men most interested to secure Mr. King's appointment. If I wanted to show the fallacy of the common impression that scientific men are not fitted for practical politics, I could not do it better than by giving the internal history of the movement. This I shall attempt only in the briefest way. The movers in the matter divided up the work, did what they could in the daytime, and met at night at Wormley's Hotel to compare notes, ascertain the effect of every shot, and decide where the next one should be fired. As all the parties concerned in the matter have now passed off the stage, I shall venture to mention one of these shots. One eminent geologist, whose support was known to be available, had not been called in, because an impression had been formed that President Hayes would not be willing to consider favorably what he might say. After the matter had been discussed at one or two meetings, one of the party proposed to sound the President on the subject at his next interview. So, when the occasion arose, he gently introduced the name of the gentleman.

"What view does he take?" inquired the President.

"I think he will be favorable to Mr. King," was the reply; "but would you give great weight to his opinion?"

"I would give great weight to it, very great weight, indeed," was the reply.

This expression was too decided in its tone to leave any doubt, and the geologist in question was on his way to Washington as soon as electricity could tell him that he was wanted. When the time finally came for a decision, the President asked Secretary Schurz for his opinion. Both agreed that King was the man, and he was duly appointed.

The new administration was eminently successful. But King was not fond of administrative work, and resigned the position at the end of a year or so. He was succeeded by John W. Powell, under whom the survey grew with a rapidity which no one had anticipated. As originally organized, the survey was one of the territories only, but the question whether it should not be extended to the States as well, and prepare a topographical atlas of the whole country, was soon mooted, and decided by Congress in the affirmative. For this extension, however, the original organizers of the survey were in no way responsible. It was the act of Congress, pure and simple.

If the success of an organization is to be measured by the public support which it has commanded, by the extension of its work and influence, and by the gradual dying out of all opposition, it must be admitted that the plan of the academy was a brilliant success. It is true that a serious crisis had once to be met. While Mr. Cleveland was governor of New York, his experience with the survey of that State had led him to distrust the methods on which the surveys of the United States were being conducted. This distrust seems to have pervaded the various heads of the departments under his administration, and led to serious charges against the conduct of both the Coast and Geological surveys. An unfavorable report upon the administration of the former was made by a committee especially appointed by the Secretary of the Treasury, and led to the resignation of its superintendent. But, in the case of the Geological Survey, the attacks were mostly conducted by the newspapers. At length, Director Powell asked permission of Secretary Lamar to write him a letter in reply. His answers were so sweeping, and so conclusive on every point, that nothing more was heard of the criticisms.

The second great work of the academy for the government was that of devising a forestry system for the United States. The immediate occasion for action in this direction was stated by Secretary Hoke Smith to be the "inadequacy and confusion of existing laws relating to the public timber lands and consequent absence of an intelligent policy in their administration, resulting in such conditions as may, if not speedily stopped, prevent the proper development of a large part of our country."

Even more than in the case of the Geological Survey might this work seem to be one of administration rather than of science. But granting that such was the case, the academy commanded great advantages in taking up the subject. The commission which it formed devoted more than a year to the study, not only of the conditions in our own country, but of the various policies adopted by foreign countries, especially Germany, and their results. As in the case of the Geological Survey, a radically new and very complete system of forestry administration was proposed. Interests having other objects than the public good were as completely ignored as they had been before.

The soundness of the conclusions reached by the Academy Commission were challenged by men wielding great political power in their respective States. For a time it was feared that the academy would suffer rather than gain in public opinion by the report it had made. But the moral force behind it was such that, in the long run, some of the severest critics saw their error, and a plan was adopted which, though differing in many details from that proposed, was, in the main, based on the conclusion of the commission. The Interior department, the Geological Survey, and the Department of Agriculture all have their part in the work.

Notwithstanding these signal demonstrations of the valuable service which the academy may render to the government, the latter has done nothing for it. The immediate influence of the leading scientific men in public affairs has perhaps been diminished as much in one direction as it has been increased in another by the official character of the organization. The very fact that the members of the academy belong to a body which is, officially, the scientific adviser of the government, prevents them from coming forward to exercise that individual influence which they might exercise were no such body in existence.

The academy has not even a place of meeting, nor is a repository for its property and records provided for it. Although it holds in trust large sums which have been bequeathed from time to time by its members for promoting scientific investigation, and is, in this way, rendering an important service to the progress of knowledge, it has practically no income of its own except the contributions of its own members, nearly all of whom are in the position described by the elder Agassiz, of having "no time to make money."

Among the men who have filled the office of president of the academy, Professor O. C. Marsh was perhaps the one whose activity covered the widest field. Though long well known in scientific circles, he first came into public prominence by his exposure of the frauds practiced by contractors in furnishing supplies for the Indians. This business had fallen into the hands of a small ring of contractors known as the "Indian ring," who knew the ropes so well that they could bid below any competitor and yet manage things so as to gain a handsome profit out of the contracts. In the course of his explorations Marsh took pains to investigate the whole matter, and published his conclusions first in the New York "Tribune," and then more fully in pamphlet form, taking care to have public attention called to the subject so widely that the authorities would have to notice it. In doing so, Mr. Delano, Secretary of the Interior, spoke of them as charges made by "a Mr. Marsh." This method of designating such a man was made effective use of by Mr. Delano's opponents in the case.

Although the investigation which followed did not elicit all the facts, it had the result of calling the attention of succeeding Secretaries of the Interior to the necessity of keeping the best outlook on the administration of Indian affairs. What I believe to have been the final downfall of the ring was not brought about until Cleveland's first administration. Then it happened in this way. Mr. Lamar, the Secretary of the Interior, was sharply on the lookout for frauds of every kind. As usual, the lowest bid for a certain kind of blanket had been accepted, and the Secretary was determined to see whether the articles furnished actually corresponded with the requirements of the contract. It chanced that he had as his appointment clerk Mr. J. J. S. Hassler, a former manufacturer of woolen goods. Mr. Hassler was put on the board to inspect the supplies, and found that the blankets, although to all ordinary appearance of the kind and quality required, were really of a much inferior and cheaper material. The result was the enforced failure of the contractor, and, I believe, the end of the Indian ring.

Marsh's explorations in search of fossil remains of the animals which once roamed over the western parts of our continent were attended by adventures of great interest, which he long had the intention of collecting and publishing in book form. Unfortunately, he never did it, nor, so far as I am aware, has any connected narrative of his adventures ever appeared in print. This is more to be regretted, because they belong to a state of things which is rapidly passing away, leaving few records of that lifelike sort which make the most impressive picture.

His guide during his early explorations was a character who has since become celebrated in America and Europe by the vivid representations of the "Wild West" with which he has amused and instructed the dwellers on two continents. Marsh was on his way to explore the region in the Rocky Mountains where he was to find the fossils which have since made his work most celebrated. The guide was burning with curiosity as to the object of the expedition. One night over the campfire he drew his chief into a conversation on the subject. The latter told him that there was once a time when the Rocky Mountains did not exist, and that part of the continent was a level plain. In the course of long ages mountains rose, and animals ran over them. Then the mountains split open; the animals died and left their bones in the clefts. The object of his expedition was now to search for some of these bones.

The bones were duly discovered, and it was not many years thereafter before the Wild West Exhibition was seen in the principal Eastern cities. When it visited New Haven, its conductor naturally renewed the acquaintance of his former patron and supporter.

"Do you remember, professor," said he, "our talk as we were going on your expedition to the Rockies,—how you told me about the mountains rising up and being split open and the bones of animals being lost in there, and how you were going to get them?"

"Oh, yes," said the other, "I remember it very well."

"Well, professor, do you know, when you told me all that I r'ally thought you was puttin' up a job on me."

The result was a friendship between the two men, which continued during Marsh's whole life. When the one felt that he ought no longer to spend all the money he earned, he consulted Marsh on the subject of "salting it down," and doubtless got good advice.

As an exposer of humbugs Marsh took a prominent place. One of these related to the so-called "Cardiff Giant." Sometime in 1869 the newspapers announced the discovery in northern New York, near the Canadian border, of an extraordinary fossil man, or colossal statue, people were not sure which, eight or ten feet high. It was found several feet below the ground while digging a well. Men of some scientific repute, including even one so eminent as Professor James Hall, had endorsed the genuineness of the find, and, on the strength of this, it was taken around to show the public. In the course of a journey through New York State, Marsh happened to pass through the town where the object was on exhibition. His train stopped forty minutes for dinner, which would give him time to drive to the place and back, and leave a margin of about fifteen minutes for an examination of the statue. Hardly more than a glance was necessary to show its fraudulent character. Inside the ears the marks of a chisel were still plainly visible, showing that the statue had been newly cut. One of the most curious features was that the stone had not been large enough to make the complete statue, so that the surface was, in one place, still in the rough. The object had been found in wet ground. Its material was sulphate of lime, the slight solubility of which would have been sufficient to make it dissolve entirely away in the course of centuries. The absence of any degradation showed that the thing was comparatively new. On the strength of this, Marsh promptly denounced the affair as a humbug. Only a feeble defense was made for it, and, a year or two later, the whole story came out. It had been designed and executed somewhere in the Northwest, transported to the place where discovered, and buried, to be afterward dug up and reported as a prehistoric wonder.

Only a few years ago the writer had an opportunity of seeing with what wonderful ease intelligent men can be imposed upon by these artificial antiquities. The would-be exhibitor of a fossil woman, found I know not where, appeared in Washington. He had not discovered the fossil himself, but had purchased it for some such sum as $100, on the assurance of its genuine character. He seems, however, to have had some misgivings on the subject, and, being an honest fellow, invited some Washington scientific men to examine it in advance of a public exhibition. The first feature to strike the critical observer was that the arms of the fossil were crossed over the breast in the most approved undertaker's fashion, showing that if the woman had ever existed, she had devoted her dying moments to arranging a pose for the approval of posterity. Little more than a glance was necessary to show that the fossil was simply baked clay. Yet the limbs were hard and stiff. One of the spectators therefore asked permission of the owner to bore with an auger into the leg and see what was inside. A few moments' work showed that the bone of the leg was a bar of iron, around which clay had been moulded and baked. I must do the crestfallen owner the justice to say that his anxiety to convince the spectators of his own good faith in the matter far exceeded his regret at the pecuniary loss which he had suffered.

Another amusing experience that Marsh had with a would-be fossil arose out of the discovery here and there in Connecticut of the fossil footprints of birds. Shortly after a find of this kind had been announced, a farmer drove his wagon up in front of the Peabody Museum, called on the professor, and told him he had dug up something curious on his farm, and he wished the professor would tell him what it was. He thought it looked like the footprints of a bird in a stone, but he was not quite sure.

Marsh went out and looked at the stone. A single glance was enough.

"Oh, I see what they are. They are the footprints of the domestic turkey. And the oddest part of it is, they are all made with the right foot."

The simple-minded countryman, in making the prints with the turkey's foot, had overlooked the difference between the right and left foot, and the consequent necessity of having the tracks which pertained to the two feet alternate.

Washington is naturally a centre of information on all subjects relating to the aboriginal tribes of America and to life on the plains generally. Besides the Geological Survey, the Bureau of Ethnology has been an active factor in this line. An official report cannot properly illustrate life in all its aspects, and therefore should be supplemented by the experiences of leading explorers. This is all the more necessary if, as seems to be the case, the peculiar characteristics of the life in question are being replaced by those more appropriate to civilization. Yet the researches of the bureau in question are not carried on in any narrow spirit, and will supply the future student of humanity with valuable pictures of the most heroic of all races, and yet doomed, apparently, to ultimate extinction. I do not think I ever saw a more impressive human figure and face than those of Chief Joseph as he stood tall, erect, and impassive, at a President's reception in the winter of 1903. He was attired in all the brilliancy of his official costume; but not a muscle of his strongly marked face betrayed the sentiments with which he must have gazed on the shining uniforms passing before him.

[1] Men and Measures of Half a Century, by Hugh McCulloch. New York: Chas. Scribner's Sons, 1889.



X

SCIENTIFIC ENGLAND

My first trip to Europe, mentioned in the last chapter, was made with my wife, when the oldest transatlantic line was still the fashionable one. The passenger on a Cunarder felt himself amply compensated for poor attendance, coarse food, and bad coffee by learning from the officers on the promenade deck how far the ships of their line were superior to all others in strength of hull, ability of captain, and discipline of crew. Things have changed on both sides since then. Although the Cunard line has completed its half century without having lost a passenger, other lines are also carefully navigated, and the Cunard passenger, so far as I know, fares as well as any other. Captain McMickan was as perfect a type of the old-fashioned captain of the best class as I ever saw. His face looked as if the gentlest zephyr that had ever fanned it was an Atlantic hurricane, and yet beamed with Hibernian good humor and friendliness. He read prayers so well on Sunday that a passenger assured him he was born to be a bishop. One day a ship of the North German Lloyd line was seen in the offing slowly gaining on us. A passenger called the captain's attention to the fact that we were being left behind. "Oh, they're very lightly built, them German ships; built to carry German dolls and such like cargo."

In London one of the first men we met was Thomas Hughes, of Rugby fame, who made us feel how worthy he was of the love and esteem bestowed upon him by Americans. He was able to make our visit pleasant in more ways than one. Among the men I wanted to see was Mr. John Stuart Mill, to whom I was attracted not only by his fame as a philosopher and the interest with which I had read his books, but also because he was the author of an excellent pamphlet on the Union side during our civil war.

On my expressing a desire to make Mr. Mill's acquaintance, Mr. Hughes immediately offered to give me a note of introduction. Mill lived at Blackheath, which, though in an easterly direction down the Thames, is one of the prettiest suburbs of the great metropolis. His dwelling was a very modest one, entered through a passage of trellis-work in a little garden. He was by no means the grave and distinguished-looking man I had expected to see. He was small in stature and rather spare, and did not seem to have markedly intellectual features. The cordiality of his greeting was more than I could have expected; and he was much pleased to know that his work in moulding English sentiment in our favor at the commencement of the civil war was so well remembered and so highly appreciated across the Atlantic.

As a philosopher, it must be conceded that Mr. Mill lived at an unfortunate time. While his vigor and independence of thought led him to break loose from the trammels of the traditional philosophy, modern scientific generalization had not yet reached a stage favorable to his becoming a leader in developing the new philosophy. Still, whatever may be the merits of his philosophic theories, I believe that up to a quite recent time no work on scientific method appeared worthy to displace his "System of Logic."

A feature of London life that must strongly impress the scientific student from our country is the closeness of touch, socially as well as officially, between the literary and scientific classes on the one side and the governing classes on the other. Mr. Hughes invited us to make an evening call with him at the house of a cabinet minister,—I think it was Mr. Goschen,—where we should find a number of persons worth seeing. Among those gathered in this casual way were Mr. Gladstone, Dean Stanley, and our General Burnside, then grown quite gray. I had never before met General Burnside, but his published portraits were so characteristic that the man could scarcely have been mistaken. The only change was in the color of his beard. Then and later I found that a pleasant feature of these informal "at homes," so universal in London, is that one meets so many people he wants to see, and so few he does not want to see.

Congress had made a very liberal appropriation for observations of the solar eclipse,—the making of which was one object of my visit,—to be expended under the direction of Professor Peirce, superintendent of the Coast Survey. Peirce went over in person to take charge of the arrangements. He arrived in London with several members of his party a few days before we did, and about the same time came an independent party of my fellow astronomers from the Naval Observatory, consisting of Professors Hall, Harkness, and Eastman. The invasion of their country by such an army of American astronomers quite stirred up our English colleagues, who sorrowfully contrasted the liberality of our government with the parsimony of their own, which had, they said, declined to make any provision for the observations of the eclipse. Considering that it was visible on their own side of the Atlantic, they thought their government might take a lesson from ours. Of course we could not help them directly; and yet I suspect that our coming, or at least the coming of Peirce, really did help them a great deal. At any rate, it was a curious coincidence that no sooner did the American invasion occur than it was semi-officially discovered that no application of which her Majesty's government could take cognizance had been made by the scientific authorities for a grant of money with which to make preparations for observing the eclipse. That the scientific authorities were not long in catching so broad a hint as this goes without saying. A little more of the story came out a few days later in a very unexpected way.

In scientific England, the great social event of the year is the annual banquet of the Royal Society, held on St. Andrew's day, the date of the annual meeting of the society, and of the award of its medals for distinguished work in science. At the banquet the scientific outlook is discussed not only by members of the society, but by men high in political and social life. The medalists are toasted, if they are present; and their praises are sung, if, as is apt to be the case with foreigners, they are absent. First in rank is the Copley medal, founded by Sir Godfrey Copley, a contemporary of Newton. This medal has been awarded annually since 1731, and is now considered the highest honor that scientific England has to bestow. The recipient is selected with entire impartiality as to country, not for any special work published during the year, but in view of the general merit of all that he has done. Five times in its history the medal has crossed the Atlantic. It was awarded to Franklin in 1753, Agassiz in 1861, Dana in 1877, and J. Willard Gibbs in 1902. The long time that elapsed between the first and the second of these awards affords an illustration of the backwardness of scientific research in America during the greater part of the first century of our independence. The year of my visit the medal was awarded to Mr. Joule, the English physicist, for his work on the relation of heat and energy.

I was a guest at the banquet, which was the most brilliant function I had witnessed up to that time. The leaders in English science and learning sat around the table. Her Majesty's government was represented by Mr. Gladstone, the Premier, and Mr. Lowe, afterward Viscount Sherbrooke, Chancellor of the Exchequer. Both replied to toasts. Mr. Lowe as a speaker was perhaps a little dull, but not so Mr. Gladstone. There was a charm about the way in which his talk seemed to display the inner man. It could not be said that he had either the dry humor of Mr. Evarts or the wit of Mr. Depew; but these qualities were well replaced by the vivacity of his manner and the intellectuality of his face. He looked as if he had something interesting he wanted to tell you; and he proceeded to tell it in a very felicitous way as regarded both manner and language, but without anything that savored of eloquence. He was like Carl Schurz in talking as if he wanted to inform you, and not because he wanted you to see what a fine speaker he was. With this he impressed one as having a perfect command of his subject in all its bearings.

I did not for a moment suppose that the Premier of England could have taken any personal interest in the matter of the eclipse. Great, therefore, was my surprise when, in speaking of the relations of the government to science, he began to talk about the coming event. I quote a passage from memory, after twenty-seven years: "I had the pleasure of a visit, a few days since, from a very distinguished American professor, Professor Peirce of Harvard. In the course of the interview, the learned gentleman expressed his regret that her Majesty's government had declined to take any measures to promote observations of the coming eclipse of the sun by British astronomers. I replied that I was not aware that the government had declined to take such measures. Indeed, I went further, and assured him that any application from our astronomers for aid in making these observations would receive respectful consideration." I felt that there might be room for some suspicion that this visit of Professor Peirce was a not unimportant factor in the changed position of affairs as regarded British observations of the eclipse.

Not only the scene I have described, but subsequent experience, has impressed me with the high appreciation in which the best scientific work is held by the leading countries of Europe, especially England and France, as if the prosecution were something of national importance which men of the highest rank thought it an honor to take part in. The Marquis of Salisbury, in an interval between two terms of service as Premier of England, presided over the British Association for the Advancement of Science, and delivered an address showing a wide and careful study of the generalizations of modern science.

In France, also, one great glory of the nation is felt to be the works of its scientific and learned men of the past and present. Membership of one of the five academies of the Institute of France is counted among the highest honors to which a Frenchman can aspire. Most remarkable, too, is the extent to which other considerations than that of merit are set aside in selecting candidates for this honor. Quite recently a man was elected a member of the Academy of Sciences who was without either university or official position, and earned a modest subsistence as a collaborator of the "Revue des Deux Mondes." But he had found time to make investigations in mathematical astronomy of such merit that he was considered to have fairly earned this distinction, and the modesty of his social position did not lie in his way.

At the time of this visit Lister was an eminent member of the medical profession, but had not, so far as I am aware, been recognized as one who was to render incalculable service to suffering humanity. From a professional point of view there are no two walks in life having fewer points of contact than those of the surgeon and the astronomer. It is therefore a remarkable example of the closeness of touch among eminent Englishmen in every walk of life, that, in subsequent visits, I was repeatedly thrown into contact with one who may fairly be recommended as among the greatest benefactors of the human race that the nineteenth century has given us. This was partly, but not wholly, due to his being, for several years, the president of the Royal Society. I would willingly say much more, but I am unable to write authoritatively upon the life and work of such a man, and must leave gossip to the daily press.

For the visiting astronomer at London scarcely a place in London has more attractions than the modest little observatory and dwelling house on Upper Tulse Hill, in which Sir William Huggins has done so much to develop the spectroscopy of the fixed stars. The owner of this charming place was a pioneer in the application of the spectroscope to the analysis of the light of the heavenly bodies, and after nearly forty years of work in this field, is still pursuing his researches. The charm of sentiment is added to the cold atmosphere of science by the collaboration of Lady Huggins. Almost at the beginning of his work Mr. Huggins, analyzing the light of the great nebula of Orion, showed that it must proceed from a mass of gas, and not from solid matter, thus making the greatest step possible in our knowledge of these objects. He was also the first to make actual measures of the motions of bright stars to or from our system by observing the wave length of the rays of light which they absorbed. Quite recently an illustrated account of his observatory and its work has appeared in a splendid folio volume, in which the rigor of science is tempered with a gentle infusion of art which tempts even the non-scientific reader to linger over its pages.

In England, the career of Professor Cayley affords an example of the spirit that impels a scientific worker of the highest class, and of the extent to which an enlightened community may honor him for what he is doing. One of the creators of modern mathematics, he never had any ambition beyond the prosecution of his favorite science. I first met him at a dinner of the Astronomical Society Club. As the guests were taking off their wraps and assembling in the anteroom, I noticed, with some surprise, that one whom I supposed to be an attendant was talking with them on easy terms. A moment later the supposed attendant was introduced as Professor Cayley. His garb set off the seeming haggardness of his keen features so effectively that I thought him either broken down in health or just recovering from some protracted illness. The unspoken words on my lips were, "Why, Professor Cayley, what has happened to you?" Being now in the confessional, I must own that I did not, at the moment, recognize the marked intellectuality of a very striking face. As a representation of a mathematician in the throes of thought, I know nothing to equal his portrait by Dickenson, which now hangs in the hall of Trinity College, Cambridge, and is reproduced in the sixth volume of Cayley's collected works. His life was that of a man moved to investigation by an uncontrollable impulse; the only sort of man whose work is destined to be imperishable. Until forty years of age he was by profession a conveyancer. His ability was such that he might have gained a fortune by practicing the highest branch of English law, if his energies had not been diverted in another direction. The spirit in which he pursued his work may be judged from an anecdote related by his friend and co-worker, Sylvester, who, in speaking of Cayley's even and placid temper, told me that he had never seen him ruffled but once. Entering his office one morning, intent on some new mathematical thought which he was discussing with Sylvester, he opened the letter-box in his door and found a bundle of papers relating to a law case which he was asked to take up. The interruption was too much. He flung the papers on the table with remarks more forcible than complimentary concerning the person who had distracted his attention at such an inopportune moment. In 1863 he was made a professor at Cambridge, where, no longer troubled with the intricacies of land tenure, he published one investigation after another with ceaseless activity, to the end of his life.

Among my most interesting callers was Professor John C. Adams, of whom I have spoken as sharing with Leverrier the honor of having computed the position of the planet Neptune before its existence was otherwise known. The work of the two men was prosecuted at almost the same time, but adopting the principle that priority of publication should be the sole basis of credit, Arago had declared that no other name than that of Leverrier should even be mentioned in connection with the work. If repute was correct, Leverrier was not distinguished for those amiable qualities that commonly mark the man of science and learning. His attitude toward Adams had always been hostile. Under these conditions chance afforded the latter a splendid opportunity of showing his superiority to all personal feeling. He was president of the Royal Astronomical Society when its annual medal was awarded to his French rival for his work in constructing new tables of the sun and planets. It thus became his duty to deliver the address setting forth the reasons for the award. He did this with a warmth of praise for Leverrier's works which could not have been exceeded had the two men been bosom friends.

Adams's intellect was one of the keenest I ever knew. The most difficult problems of mathematical astronomy and the most recondite principles that underlie the theory of the celestial motions were to him but child's play. His works place him among the first mathematical astronomers of the age, and yet they do not seem to do his ability entire justice. Indeed, for fifteen years previous to the time of my visit his published writings had been rather meagre. But I believe he was justly credited with an elaborate witticism to the following effect: "In view of the fact that the only human being ever known to have been killed by a meteorite was a monk, we may concede that after four hundred years the Pope's bull against the comet has been justified by the discovery that comets are made up of meteorites."

Those readers who know on what imperfect data men's impressions are sometimes founded will not be surprised to learn of my impression that an Englishman's politics could be inferred from his mental and social make-up. If all men are born either Aristotelians or Platonists, then it may be supposed that all Englishmen are born Conservatives or Liberals.

The utterances of English journalists of the Conservative party about American affairs during and after our civil war had not impressed me with the idea that one so unfortunate as to be born in that party would either take much interest in meeting an American or be capable of taking an appreciative view of scientific progress. So confident was I of my theory that I remarked to a friend with whom I had become somewhat intimate, that no one who knew Mr. Adams could have much doubt that he was a Liberal in politics.

An embarrassed smile spread over the friend's features. "You would not make that conclusion known to Mr. Adams, I hope," said he.

"But is he not a Liberal?"

"He is not only a Conservative, but declares himself 'a Tory of the Tories.'"

I afterward found that he fully justified his own description. At the university, he was one of the leading opponents of those measures which freed the academic degrees from religious tests. He was said to have been among those who objected to Sylvester, a Jew, receiving a degree.

I had decided to observe the eclipse at Gibraltar. In order that my results, if I obtained any, might be utilized in the best way, it was necessary that the longitude of the station should be determined by telegraph. This had never been done for Gibraltar. How great the error of the supposed longitude might have been may be inferred from the fact that a few years later, Captain F. Green of the United States Navy found the longitude of Lisbon on the Admiralty charts to be two miles in error. The first arrangements I had to make in England were directed to this end. Considering the relation of the world's great fortress to British maritime supremacy, it does seem as if there were something presumptuous in the coolness with which I went among the authorities to make arrangements for the enterprise. Nevertheless, the authorities permitted the work, with a cordiality which was of itself quite sufficient to remove any such impression, had it been entertained. The astronomers did, indeed, profess to feel it humiliating that the longitude of such a place as Gibraltar should have to be determined from Greenwich by an American. They did not say "by a foreigner," because they always protested against Americans looking upon themselves as such. Still, it would not be an English enterprise if an American carried it out. I suspect, however, that my proceedings were not looked upon with entire dissatisfaction even by the astronomers. They might prove as good a stimulant to their government in showing a little more enterprise in that direction as the arrival of our eclipse party did.

The longitude work naturally took me to the Royal Observatory which has made the little town of Greenwich so famous. It is situated some eight miles east from Charing Cross, on a hill in Greenwich Park, with a pleasant outlook toward the Thames. From my youth up I had been working with its observations, and there was no institution in the world which I had approached, or could approach, with the interest I felt in ascending the little hill on which it is situated. When the Calabria was once free from her wharf in New York harbor, and on her way down the Narrows, the foremost thought was, "Off for Europe; we shall see Greenwich!" The day of my arrival in London I had written to Professor Airy, and received an answer the same evening, inviting us to visit the observatory and spend an afternoon with him a day or two later.

I was shown around the observatory by an assistant, while my wife was entertained by Mrs. Airy and the daughters inside the dwelling. The family dined as soon as the day's work was over, about the middle of the afternoon. After the meal, we sat over a blazing fire and discussed our impressions of London.

"What place in London interested you most?" said Airy to my wife.

"The first place I went to see was Cavendish Square."

"What was there in Cavendish Square to interest you?"

"When I was a little girl, my mother once gave me, as a birthday present, a small volume of poems. The first verse in the book was:—

"'Little Ann and her mother were walking one day Through London's wide city so fair; And business obliged them to go by the way That led them through Cavendish Square.'"

To our astonishment the Astronomer Royal at once took up the thread:—

"'And as they passed by the great house of a lord, A beautiful chariot there came, To take some most elegant ladies abroad, Who straightway got into the same,'"

and went on to the end. I do not know which of the two was more surprised: Airy, to find an American woman who was interested in his favorite ballad, or she to find that he could repeat it by heart. The incident was the commencement of a family friendship which has outlived both the heads of the Airy family.

We may look back on Airy as the most commanding figure in the astronomy of our time. He owes this position not only to his early works in mathematical astronomy, but also to his ability as an organizer. Before his time the working force of an observatory generally consisted of individual observers, each of whom worked to a greater or less extent in his own way. It is true that organization was not unknown in such institutions. Nominally, at least, the assistants in a national observatory were supposed to follow the instructions of a directing head. This was especially the case at Greenwich. Still, great dependence was placed upon the judgment and ability of the observer himself, who was generally expected to be a man well trained in his specialty, and able to carry on good work without much help. From Airy's point of view, it was seen that a large part of the work necessary to the attainment of the traditional end of the Royal Observatory was of a kind that almost any bright schoolboy could learn to do in a few weeks, and that in most of the remaining part plodding industry, properly directed, was more important than scientific training. He could himself work out all the mathematical formulae and write all the instructions required to keep a small army of observers and computers employed, and could then train in his methods a few able lieutenants, who would see that all the details were properly executed. Under these lieutenants was a grade comprising men of sufficient technical education to enable them to learn how to point the telescope, record a transit, and perform the other technical operations necessary in an astronomical observation. A third grade was that of computers: ingenious youth, quick at figures, ready to work for a compensation which an American laborer would despise, yet well enough schooled to make simple calculations. Under the new system they needed to understand only the four rules of arithmetic; indeed, so far as possible Airy arranged his calculations in such a way that subtraction and division were rarely required. His boys had little more to do than add and multiply. Thus, so far as the doing of work was concerned, he introduced the same sort of improvement that our times have witnessed in great manufacturing establishments, where labor is so organized that unskilled men bring about results that formerly demanded a high grade of technical ability. He introduced production on a large scale into astronomy.

At the time of my visit, it was much the fashion among astronomers elsewhere to speak slightingly of the Greenwich system. The objections to it were, in substance, the same that have been made to the minute subdivision of labor. The intellect of the individual was stunted for the benefit of the work. The astronomer became a mere operative. Yet it must be admitted that the astronomical work done at Greenwich during the sixty years since Airy introduced his system has a value and an importance in its specialty that none done elsewhere can exceed. All future conclusions as to the laws of motion of the heavenly bodies must depend largely upon it.

The organization of his little army necessarily involved a corresponding change in the instruments they were to use. Before his time the trained astronomer worked with instruments of very delicate construction, so that skill in handling them was one of the requisites of an observer. Airy made them in the likeness of heavy machinery, which could suffer no injury from a blow of the head of a careless observer. Strong and simple, they rarely got out of order. It is said that an assistant who showed a visiting astronomer the transit circle some times hit it a good slap to show how solid it was; but this was not done on the present occasion. The little army had its weekly marching orders and made daily reports of progress to its commander, who was thus enabled to control the minutest detail of every movement.

In the course of the evening Airy gave me a lesson in method, which was equally instructive and entertaining. In order to determine the longitude of Gibraltar, it was necessary that time signals should be sent by telegraph from the Royal Observatory. Our conversation naturally led us into a discussion of the general subject of such operations. I told him of the difficulties we had experienced in determining a telegraphic longitude,—that of the Harvard Observatory from Washington, for example,—because it was only after a great deal of talking and arranging on the evening of the observation that the various telegraph stations between the two points could have their connections successfully made at the same moment. At the appointed hour the Washington operator would be talking with the others, to know if they were ready, and so a general discussion about the arrangements might go on for half an hour before the connections were all reported good. If we had such trouble in a land line, how should we get a connection from London to the Gibraltar cable through lines in constant use?

"But," said Airy, "I never allow an operator who can speak with the instruments to take part in determining a telegraphic longitude."

"Then how can you get the connections all made from one end of the line to the other, at the same moment, if your operators cannot talk to one another?"

"Nothing is simpler. I fix in advance a moment, say eight o'clock Greenwich mean time, at which signals are to commence. Every intermediate office through which the signals are to pass is instructed to have its wires connected in both directions exactly at the given hour, and to leave them so connected for ten minutes, without asking any further instructions. At the end of the line the instruments must be prepared at the appointed hour to receive the signals. All I have to do here is to place my clock in the circuit and send on the signals for ten minutes, commencing at eight o'clock. They are recorded at the other end of the line without further trouble."

"But have you never met with a failure to understand the instructions?"

"No; they are too simple to be mistaken, once it is understood that no one has anything to do but make his connections at the designated moment, without asking whether any one else is ready."

Airy was noted not less for his ability as an organizer than for his methodical habits. The care with which he preserved every record led Sir William Rowan Hamilton to say that when Airy wiped his pen on a blotter, he fancied him as always taking a press copy of the mark. His machinery seemed to work perfectly, whether it was constructed of flesh or of brass. He could prepare instructions for the most complicated piece of work with such effective provision against every accident and such completeness in every detail that the work would go on for years without further serious attention from him. The instruments which he designed half a century ago are mostly in use to this day, with scarcely an alteration.

Yet there is some reason to fear that Airy carried method a little too far to get the best results. Of late years his system has been greatly changed, even at Greenwich. It was always questionable whether so rigid a military routine could accomplish the best that was possible in astronomy; and Airy himself, during his later years, modified his plan by trying to secure trained scientific men as his assistants, giving them liberty to combine independent research, on their own account, with the work of the establishment. His successor has gone farther in the same direction, and is now gathering around him a corps of young university men, from whose ability much may be expected. Observations with the spectroscope have been pursued, and the observatory has taken a prominent part in the international work of making a photographic map of the heavens. Of special importance are the regular discussions of photographs of the sun, taken in order to determine the law of the variation of the spots. The advantage of the regular system which has been followed for more than fifty years is seen in the meteorological observations; these disprove some theories of the relation between the sun and the weather, in a way that no other set of meteorological records has done. While delicate determinations of the highest precision, such as those made at Pulkova, are not yet undertaken to any great extent, a regular even if slow improvement is going on in the general character of the observations and researches, which must bear fruit in due time.

One of the curious facts we learned at Greenwich was that astronomy was still supposed to be astrology by many in England. That a belief in astrology should survive was perhaps not remarkable, though I do not remember to have seen any evidence of it in this country. But applications received at the Royal Observatory, from time to time, showed a widespread belief among the masses that one of the functions of the astronomer royal was the casting of horoscopes.

We went to Edinburgh. Our first visit was to the observatory, then under the direction of Professor C. Piazzi Smyth, who was also an Egyptologist of repute, having made careful measurements of the Pyramids, and brought out some new facts regarding their construction. He was thus led to the conclusion that they bore marks of having been built by a people of more advanced civilization than was generally supposed,—so advanced, indeed, that we had not yet caught up to them in scientific investigation. These views were set forth with great fullness in his work on "The Antiquity of Intellectual Man," as well as in other volumes describing his researches. He maintained that the builders of the Pyramids knew the distance of the sun rather better than we did, and that the height of the Great Pyramid had been so arranged that if it was multiplied by a thousand millions we should get this distance more exactly than we could measure it in these degenerate days. With him, to believe in the Pyramid was to believe this, and a great deal more about the civilization which it proved. So, when he asked me whether I believed in the Pyramid, I told him that I did not think I would depend wholly upon the Pyramid for the distance of the sun to be used in astronomy, but should want its indications at least confirmed by modern researches. The hint was sufficient, and I was not further pressed for views on this subject.

He introduced us to Lady Hamilton, widow of the celebrated philosopher, who still held court at Edinburgh. The daughter of the family was in repute as a metaphysician. This was interesting, because I had never before heard of a female metaphysician, although there were several cases of female mathematicians recorded in history. First among them was Donna Maria Agnesi, who wrote one of the best eighteenth-century books on the calculus, and had a special dispensation from the Pope to teach mathematics at Bologna. We were therefore very glad to accept an invitation from Lady Hamilton to spend an evening with a few of her friends. Her rooms were fairly filled with books, the legacy of one of whom it was said that "scarcely a thought has come down to us through the ages which he has not mastered and made his own."

The few guests were mostly university people and philosophers. The most interesting of them was Professor Blackie, the Grecian scholar, who was the liveliest little man of sixty I ever saw; amusing us by singing German songs, and dancing about the room like a sprightly child among its playmates. I talked with Miss Hamilton about Mill, whose "Examination of Sir William Hamilton's Philosophy" was still fresh in men's minds. Of course she did not believe in this book, and said that Mill could not understand her father's philosophy. With all her intellect, she was a fine healthy-looking young lady, and it was a sad surprise, a few years later, to hear of her death. Madame Sophie Kovalevsky afterward appeared on the stage as the first female mathematician of our time, but it may be feared that the woman philosopher died with Miss Hamilton.

A large party of English astronomers were going to Algeria to observe the eclipse. The government had fitted up a naval transport for their use, and as I was arranging for a passage on a ship of the Peninsular and Oriental Line we received an invitation to become the guests of the English party. Among those on board were Professor Tyndall; Mr. Huggins, the spectroscopist; Sir Erastus Ommaney, a retired English admiral, and a fellow of the Royal Society; Father Perry, S. J., a well-known astronomer; and Lieutenant Wharton, who afterward became hydrographer to the Admiralty.

The sprightliest man on board was Professor Tyndall. He made up for the absence of mountains by climbing to every part of the ship he could reach. One day he climbed the shrouds to the maintop, and stood surveying the scene as if looking out from the top of the Matterhorn. A sailor followed him, and drew a chalk-line around his feet. I assume the reader knows what this means; if he does not, he can learn by straying into the sailors' quarters the first time he is on board an ocean steamer. But the professor absolutely refused to take the hint.

We had a rather rough passage, from which Father Perry was the greatest sufferer. One day he heard a laugh from the only lady on board, who was in the adjoining stateroom. "Who can laugh at such a time as this!" he exclaimed. He made a vow that he would never go on the ocean again, even if the sun and moon fought for a month. But the vows of a seasick passenger are forgotten sooner than any others I know of; and it was only four years later that Father Perry made a voyage to Kerguelen Island, in the stormiest ocean on the globe, to observe a transit of Venus.

Off the coast of Spain, the leading chains of the rudder got loose, during a gale in the middle of the night, and the steering apparatus had to be disconnected in order to tighten them. The ship veered round into the trough of the sea, and rolled so heavily that a table, twenty or thirty feet long, in the saloon, broke from its fastenings, and began to dance around the cabin with such a racket that some of the passengers feared for the safety of the ship.

Just how much of a storm there was I cannot say, believing that it is never worth while for a passenger to leave his berth, if there is any danger of a ship foundering in a gale. But in Professor Tyndall's opinion we had a narrow escape. On arriving at Gibraltar, he wrote a glowing account of the storm to the London Times, in which he described the feelings of a philosopher while standing on the stern of a rolling ship in an ocean storm, without quite knowing whether she was going to sink or swim. The letter was anonymous, which gave Admiral Ommaney an excellent opportunity to write as caustic a reply as he chose, under the signature of "A Naval Officer." He said that sailor was fortunate who could arrange with the clerk of the weather never to have a worse storm in crossing the Bay of Biscay than the one we had experienced.

We touched at Cadiz, and anchored for a few hours, but did not go ashore. The Brooklyn, an American man-of-war, was in the harbor, but there was no opportunity to communicate with her, though I knew a friend of mine was on board.

Gibraltar is the greatest babel in the world, or, at least, the greatest I know. I wrote home: "The principal languages spoken at this hotel are English, Spanish, Moorish, French, Italian, German, and Danish. I do not know what languages they speak at the other hotels." Moorish and Spanish are the local tongues, and of course English is the official one; but the traders and commercial travelers speak nearly every language one ever heard.

I hired a Moor—who bore some title which indicated that he was a descendant of the Caliphs, and by which he had to be addressed—to do chores and act as general assistant. One of the first things I did, the morning after my arrival, was to choose a convenient point on one of the stone parapets for "taking the sun," in order to test the running of my chronometer. I had some suspicion as to the result, but was willing to be amused. A sentinel speedily informed me that no sights were allowed to be taken on the fortification. I told him I was taking sights on the sun, not on the fortification. But he was inexorable; the rule was that no sights of any sort could be taken without a permit. I soon learned from Mr. Sprague, the American consul, who the proper officer was to issue the permit, which I was assured would be granted without the slightest difficulty. The consul presented me to the military governor of the place, General Sir Fenwick Williams of Kars. I did not know till long afterward that he was born very near where I was. He was a man whom it was very interesting to meet. His heroic defense of the town whose name was added to his own as a part of his title was still fresh in men's minds. It had won him the order of the Bath in England, the Grand Cross of the Legion of Honor and a sword from Napoleon III., and the usual number of lesser distinctions. The military governor, the sole authority and viceroy of the Queen in the fortress, is treated with the deference due to an exalted personage; but this deference so strengthens the dignity of the position that the holder may be frank and hearty at his own pleasure, without danger of impairing it. Certainly, we found Sir Fenwick a most genial and charming gentleman. The Alabama claims were then in their acute stage, and he expressed the earnest hope that the two nations would not proceed to cutting each other's throats over them.

There was no need of troubling the governor with such a detail as that of a permit to take sights; but the consul ventured to relate my experience of the morning. He took the information in a way which showed that England, in making him a general, had lost a good diplomatist. Instead of treating the matter seriously, which would have implied that we did not fully understand the situation, he professed to be greatly amused, and said it reminded him of the case of an old lady in "Punch" who had to pass a surveyor in the street, behind a theodolite. "Please, sir, don't shoot till I get past," she begged.

Before leaving England, I had made very elaborate arrangements, both with the Astronomer Royal and with the telegraph companies, to determine the longitude of Gibraltar by telegraphic signals. The most difficult part of the operation was the transfer of the signals from the end of the land line into the cable, which had to be done by hand, because the cable companies were not willing to trust to an automatic action of any sort between the land line and the cable. It was therefore necessary to show the operator at the point of junction how signals were to be transmitted. This required a journey to Port Curno, at the very end of the Land's End, several miles beyond the terminus of the railway. It was the most old-time place I ever saw; one might have imagined himself thrown back into the days of the Lancasters. The thatched inn had a hard stone floor, with a layer of loose sand scattered over it as a carpet in the bedroom. My linguistic qualities were put to a severe test in talking with the landlady. But the cable operators were pleasing and intelligent young gentlemen, and I had no difficulty in making them understand how the work was to be done.

The manager of the cable was Sir James Anderson, who had formerly commanded a Cunard steamship from Boston, and was well known to the Harvard professors, with whom he was a favorite. I had met him, or at least seen him, at a meeting of the American Academy ten years before, where he was introduced by one of his Harvard friends. After commanding the ship that laid the first Atlantic cable, he was made manager of the cable line from England to Gibraltar. He gave me a letter to the head operator at Gibraltar, the celebrated de Sauty.

I say "the celebrated," but may it not be that this appellation can only suggest the vanity of all human greatness? It just occurs to me that many of the present generation may not even have heard of the—

Whispering Boanerges, son of silent thunder, Holding talk with nations,

immortalized by Holmes in one of his humorously scientific poems. During the two short weeks that the first Atlantic cable transmitted its signals, his fame spread over the land, for the moment obscuring by its brilliancy that of Thomson, Field, and all others who had taken part in designing and laying the cable. On the breaking down of the cable he lapsed into his former obscurity. I asked him if he had ever seen Holmes's production. He replied that he had received a copy of "The Atlantic Monthly" containing it from the poet himself, accompanied by a note saying that he might find in it something of interest. He had been overwhelmed with invitations to continue his journey from Newfoundland to the United States and lecture on the cable, but was sensible enough to decline them.

The rest of the story of the telegraphic longitude is short. The first news which de Sauty had to give me was that the cable was broken,—just where, he did not know, and would not be able soon to discover. After the break was located, an unknown period would be required to raise the cable, find the place, and repair the breach. The weather, on the day of the eclipse, was more than half cloudy, so that I did not succeed in making observations of such value as would justify my waiting indefinitely for the repair of the cable, and the project of determining the longitude had to be abandoned.



XI

MEN AND THINGS IN EUROPE

We went from Gibraltar to Berlin in January by way of Italy. The Mediterranean is a charming sea in summer, but in winter is a good deal like the Atlantic. The cause of the blueness of its water is not completely settled; but its sharing this color with Lake Geneva, which is tinged with detritus from the shore, might lead one to ascribe it to substances held in solution. The color is noticeable even in the harbor of Malta, to which we had a pleasant though not very smooth passage of five days.

Here was our first experience of an Italian town of a generation ago. I had no sooner started to take a walk than a so-called guide, who spoke what he thought was English, got on my track, and insisted on showing me everything. If I started toward a shop, he ran in before me, invited me in, asked what I would like to buy, and told the shopman to show the gentleman something. I could not get rid of him till I returned to the hotel, and then he had the audacity to want a fee for his services. I do not think he got it. Everything of interest was easily seen, and we only stopped to take the first Italian steamer to Messina. We touched at Syracuse and Catania, but did not land.

Etna, from the sea, is one of the grandest sights I ever saw. Its snow-covered cone seems to rise on all sides out of the sea or the plain, and to penetrate the blue sky. In this it gives an impression like that of the Weisshorn seen from Randa, but gains by its isolation.

At Messina, of course, our steamer was visited by a commissionnaire, who asked me in good English whether I wanted a hotel. I told him that I had already decided upon a hotel, and therefore did not need his services. But it turned out that he belonged to the very hotel I was going to, and was withal an American, a native-born Yankee, in fact, and so obviously honest that I placed myself unreservedly in his hands,—something which I never did with one of his profession before or since. He said the first thing was to get our baggage through the custom-house, which he could do without any trouble, at the cost of a franc. He was as good as his word. The Italian custom-house was marked by primitive rigor, and baggage was commonly subjected to a very thorough search. But my man was evidently well known and fully trusted. I was asked to raise the lid of one trunk, which I did; the official looked at it, with his hands in his pockets, gave a nod, and the affair was over. My Yankee friend collected one franc for that part of the business. He told us all about the place, changed our money so as to take advantage of the premium on gold, and altogether looked out for our interests in a way to do honor to his tribe. I thought there might be some curious story of the way in which a New Englander of such qualities could have dropped into such a place, but it will have to be left to imagination.

We reached the Bay of Naples in the morning twilight, after making an unsuccessful attempt to locate Scylla and Charybdis. If they ever existed, they must have disappeared. Vesuvius was now and then lighting up the clouds with its intermittent flame. But we had passed a most uncomfortable night, and the morning was wet and chilly. A view requires something more than the objective to make it appreciated, and the effect of a rough voyage and bad weather was such as to deprive of all its beauty what is considered one of the finest views in the world. Moreover, the experience made me so ill-natured that I was determined that the custom-house officer at the landing should have no fee from me. The only article that could have been subject to duty was on top of everything in the trunk, except a single covering of some loose garment, so that only a touch was necessary to find it. When it came to the examination, the officer threw the top till contemptuously aside, and devoted himself to a thorough search of the bottom. The only unusual object he stumbled upon was a spyglass inclosed in a shield of morocco. Perhaps a gesture and a remark on my part aroused his suspicions. He opened the glass, tried to take it to pieces, inspected it inside and out, and was so disgusted with his failure to find anything contraband in it that he returned everything to the trunk, and let us off.

It is commonly and quite justly supposed that the more familiar the traveler is with the language of the place he visits, the better he will get along. It is a common experience to find that even when you can pronounce the language, you cannot understand what is said. But there are exceptions to all rules, and circumstances now and then occur in which one thus afflicted has an advantage over the native. You can talk to him, while he cannot talk to you. There was an amusing case of this kind at Munich. The only train that would take us to Berlin before nightfall of the same day left at eight o'clock in the morning, by a certain route. There was at Munich what we call a union station. I stopped at the first ticket-office where I saw the word "Berlin" on the glass, asked for a ticket good in the train that was going to leave at eight o'clock the next morning for Berlin, and took what the seller gave me. He was a stupid-looking fellow, so when I got to my hotel I showed the ticket to a friend. "That is not the ticket that you want at all," said he; "it will take you by a circuitous route in a train that does not leave until after nine, and you will not reach Berlin until long after dark." I went directly back to the station and showed my ticket to the agent.

"I—asked—you—for—a—ticket—good—in—the—train—which— leaves—at—eight—o'—clock. This—ticket—is—not—good— in—that—train. Sie—haben—mich—betruegen. I—want—you— to—take—the—ticket—back—and—return—me—the—money. What—you—say—can—I—not—understand."

Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse