p-books.com
Sir Jagadis Chunder Bose - His Life and Speeches
by Sir Jagadis Chunder Bose
Previous Part     1  2  3  4
Home - Random Browse

Returning to pure science, no phenomena in plant life are so extremely varied or have yet been more incapable of generalisation than the "tropic" movements, such as the twining of tendrils, the heliotropic movements of some towards and of others away from light, and the opposite geotropic movements of the root and shoot, in the direction of gravitation or away from it. My latest investigations recently communicated to the Royal Society have established a single fundamental reaction which underlies all these effects so extremely diverse.

Finally, I may say a word of that other new and unexpected chapter which is opening out from my demonstration of nervous impulse in plants. The speed with which the nervous impulse courses through the plant has been determined; its nervous excitability and the variation of that excitability have likewise been measured. The nervous impulse in plant and in man is found exalted or inhibited under identical conditions. We may even follow this parallelism in what may seem extreme cases. A plant carefully protected under glass from outside shocks, looks sleek and flourishing; but its higher nervous function is then found to be atrophied. But when a succession of blows is rained on this effect and bloated specimen, the shocks themselves create nervous channels and arouse anew the deteriorated nature. And is it not shocks of adversity, and not cotton-wool protection, that evolve true manhood?

A question long perplexing physiologists and psychologists alike is that concerned with the great mystery that underlies memory. But now through certain experiments I have carried out, it is possible to trace "memory impressions" backwards even in inorganic matter, such latent impressions being capable of subsequent revival. Again the tone of our sensation is determined by the intensity of nervous excitation that reaches the central perceiving organ. It would theoretically be possible to change the tone or quality of our sensation, if means could be discovered by which the nervous impulse would become modified during transit. Investigation on nervous impulse in plants has led to the discovery of a controlling method, which was found equally effective in regard to the nervous impulse in animal.

Thus the lines of physics, of physiology and of psychology converge and meet. And here will assemble those who would seek oneness amidst the manifold. Here it is that the genius of India should find its true blossoming.

The thrill in matter, the throb of life, the pulse of growth, the impulse coursing through the nerve and the resulting sensations, how diverse are these and yet how unified! How strange it is that the tremor of excitation in nervous matter should not merely be transmitted but transmuted and reflected like the image on a mirror, from a different plane of life, in sensation and in affection, in thought and in emotion. Of these which is more real, the material body or the image which is independent of it? Which of these is undecaying, and which of these is beyond the reach of death?

It was a woman in the Vedic times, who when asked to take her choice of the wealth that would be hers for the asking, inquired whether that would win for her deathlessness. What would she do with it, if it did not raise her above death? This has always been the cry of the soul of India, not for addition of material bondage, but to work out through struggle her self-chosen destiny and win immortality. Many a nation had risen in the past and won the empire of the world. A few buried fragments are all that remain as memorials of the great dynasties that wielded the temporal power. There is, however, another element which find its incarnation in matter, yet transcends its transmutation and apparent destruction: that is the burning flame born of thought which has been handed down through fleeting generations.

Not in matter, but in thought, not in possessions or even in attainments but in ideals, are to be found the seed of immortality. Not through material acquisition but in generous diffusion of ideas and ideals can the true empire of humanity be established. Thus to Asoka to whom belonged this vast empire, bounded by the inviolate seas, after he had tried to ransom the world by giving away to the utmost, there came a time when he had nothing more to give, except one half of an Amlaki fruit. This was his last possession and anguished cry was that since he had nothing more to give, let the half of the Amlaki be accepted as his final gift.

Asoka's emblem of the Amlaki will be seen on the cornices of the Institute, and towering above all is the symbol of the thunderbolt. It was the Rishi Dadhichi, the pure and blameless, who offered his life that the divine weapon, the thunderbolt, might be fashioned out of his bones to smite evil and exalt righteousness. It is but half of the Amlaki that we can offer now. But the past shall be reborn in a yet nobler future. We stand here to-day and resume work to-morrow so that by the efforts of our lives and our unshaken faith in the future we may all help to build the greater India yet to be.



THE PRAYING PALM OF FARIDPUR

Under the presidency of Lord Ronaldshay Sir J. C. Bose delivered a lecture on Friday the 4th January 1918, at the "Bose Institute" on 'The Praying Palm-tree.' He said:

Perhaps no phenomenon is so remarkable and shrouded with greater mystery as the performances of a particular palm tree near Faridpore. In the evening while the temple bells ring calling upon people to prayer, this tree bows down as if prostrate itself. It erects its head again in the morning, and this process is repeated every day during the year. This extraordinary phenomenon has been regarded as miraculous, and pilgrims have been attracted in great numbers. It is alleged that offerings made to the tree, that is to say to the custodian of the tree, have been the means effecting marvellous cures. It is not necessary to pronounce any opinion on the subject; these cures may be taken as effective as other faith cures now so fashionable in the West.

I first obtained photographs of the two positions which proved the phenomenon to be real. The next thing was to devise special apparatus to record continuously the movement of the tree day and night. But difficulties were encountered in getting the consent of the proprietor to attach foreign instruments to the sacred tree. His misgivings were however removed when it was explained that the instruments were pure Swadeshi, being made in my Laboratory. The records of the Palm Tree showed that it fell with the rise of temperature, and rose with the fall. Records obtained with other trees brought out the extraordinary and unsuspected fact that all trees are moving—such movements being in response to changes in their environment.

SENSITIVE OR INSENSITIVE?

That not a "Mimosa" alone, but all plants are sensitive was demonstrated by some striking experiments. A spiral tendril, under electric shock was shown to writhe imitating the contortions of a tortured worm. In ordinary plants, all sides being equally sensitive contraction takes place on all directions with resulting neutral effect. Another striking experiment was to show how ordinary plants could be made sensitive by the mere process of amputation of the balancing half? Further experiments were shown demonstrating the effects of light, of warmth and other stimuli on the plant. Warmth worked antagonistically to light. The numerous permutations brought about by two changing variations were shown by a mechanical hand, which traced most complicated curves. In actual life the number of changing factors are very numerous, hence the intricacy involved in the manifestations of life.

The experiments that have been shown will help the audience to realise in some measure that the world we live in is not a theatre of caprice or chance, but that an all pervading law holds and regulates its destiny. We have seen that the vast expanse of life which is unvoiced, seemingly, so impassive, is instinct with sensibility. Thus the whole of the vegetable world, including rigid trees perceive the changes in their environment and respond to them by unmistakable signals. They thrill under light and become depressed by darkness; the warmth of summer and frost of winter, drought and rain, these and many other happenings leave a subtle impression on the life of the plant. By invention of apparatus of extreme delicacy, it is possible to make the plant itself write down the history of its own experience in a hieroglyphic which it is possible to decipher. From these pages, taken from the diary of the plant, it will perhaps be possible some day to get an insight into the great mystery that surrounds life itself. For I shall in the course of lectures given here show how the life of plants is a mere reflection of our own. I shall show how shocks and wounds affect them as they affect animals; how a common death-throb marks the crisis when life passes into death. The exuberance of life, on the other hand, will be shown by pulsing throbs of animal's heart and spontaneous beat in vegetal tissues. Another aspect of this exuberance will be shown in the imperceptible growth of plants. My recently invented Crescograph, to be exhibited at my lecture a fortnight hence, will magnify growth a million-fold and record ultra microscopic movements, smaller than a single wave length of light. By this apparatus growth will be instantaneously recorded and conditions which foster or inhibit growth discriminated. I shall demonstrate my discovery of the nervous system in plants, and show how shocks from without pass within, and how this nervous impulse modified during transit. It will further be shown how various stimulants, anesthetics and poison induce effects which are identical in man and in plant. It will be obvious how these studies will open new fields of inquiry in different branches of science; in Physiology and Psychology; in Medicine and in Agriculture.

Amrita Bazar Patrika, 7-1-1918.



VISUALISATION OF GROWTH

Sir J. C. Bose delivered on the 18th January 1918, at the Bose Institute, the second of the series of discourses on revelations of plant life. This time the audience had the opportunity of witnessing the working of Bose's newly perfected Crescograph which is undoubtedly one of the marvels in modern Science. For this apparatus gives a visual demonstration of movements which are far beyond the highest powers of microscope. The invisible internal workings of life are thus for the first time revealed to man.

LAW VERSUS CAPRICE

The lecturer first described the infinite variations in life reactions in plants. The same external stimulus, he said apparently produces one effect in one plant; and precisely opposite in another. Some leaves move towards light; others are repelled by it. The root bends towards the centre of the earth, the shoot rises above away from it. Numerous other "tropic" movements are caused by contact, by electricity, by moisture and by invisible radiations. These effects appear so extremely diverse and capricious that some of the leading physiologists were forced to come to the conclusion that there was no law guiding such movement, but that the plant decides for itself what should be the effect of external conditions on it.

RECORD OF GROWTH

Most of these tropic movements are brought about by changes induced in growth by the action of different forces. But growth is so excessively slow that slight changes induced in it is impossible of detection. The proverbially slow paced snail moves two thousand times faster than the growing point of a plant. Hence to visualise growth and its changes, apparatus has to be invented which would magnify growth something like a million times. If such a thing were possible the pace of the snail would be quickened to the speed of a rifle bullet. The difficulties in connection with the devising and construction of apparatus with this extraordinary power appeared at first an impossibility. The Jewels for the fittings of the apparatus could not be found fine enough. The lecturer had to discard ordinary jewels for diamonds, such bearings being only made in Germany. But the outbreak of the war put an end to this source of supply. He had then to turn to resources available in India.

ADVANCE OF AGRICULTURE

The invention of method for immediate record of growth and its variations under various conditions is one of immense practical importance. Experiments on gigantic scales are in progress all over the world for this purpose. At Rothamstead, this work has been going on for more than half a century. The great Department of Agriculture in Mashington spends millions every year on such experiments, there being a thousand men employed in research. Recently many experiments have been undertaken on the effect of electricity on growth. The results obtained have been mostly contradictory. For real advance in agriculture we must first discover the laws of growth. Ordinary experiments on growth are of little value because they take weeks for detecting changes of growth which might have been brought about by charges in the environment. The only satisfactory method is to devise an apparatus which would make the plant itself record the rate of its growth, and the changes induced by food or treatment in the course of less than a minute, during which short time it is possible to maintain external conditions constant.

THE MAGNETIC CRESCOGRAPH

All the difficulties connected with the devising of apparatus has been completely removed by the lecturer's successful invention of his new magnetic crescograph in which practically unlimited magnification is obtained without the difficulties arising from the unavoidable friction of bearings. Magnetic forces are so exactly balanced that a disturbance in the balance caused by slightest movements such as that of growth is magnified ten millions of times. The application of this new principle will be of great importance in various investigations in Physics.

Sir J. C. Bose next demonstrated some marvellous results obtained with his apparatus. A seedling which on account of the Winter season appeared stationary jotted down by taps on a moving plate, the rate of its growth. The application of a chemical instantly arrested this growth, but an antidote timely applied, not only removed the torpor but enhanced the growth at an enormous rate. The life of the plant became pliant at the will of the experimenter, and nothing appeared more marvellous than the realisation that man has the power to pierce the veil that shrouds the mystery that had hitherto baffled him.

The lecturer explained how the effect of a given agent—a chemical solution or an electric current—is profoundly modified by the dose a given intensity, producing one effect and a different intensity giving rise to an effect diametrically opposite. This is the reason of the inexplicable anomalies which have baffled many investigators. Numerous are the forces which act on growth some helping, others retarding, the effects being further modified by the strength and duration of application. These factors that determine growth are each to be studied in detail, and the laws of effect of each to be discovered. There can be no real advance in scientific agriculture until this is done.

Amrita Bazar Patrika, 19-1-1918.



SIR J. C. BOSE AT BOMBAY.

There was a brilliant gathering at the Royal Opera House on Tuesday the 22nd January 1918, when Sir Jagadis Bose gave a deeply interesting lecture on the history of the inception of his Institute in Calcutta and its aims together with an exposition of his scientific researches illustrated by lantern slides. The theatre was full long before the lecture commenced and several prominent people were present the bulk of the audience consisting of Indians.

Mr. Tilak in introducing the distinguished lecturer to the audience referred to Professor Bose's lasting services not only to the Indian nation but to the whole world. These references to Dr. Bose and his work elicited frequent applause from the large audience.

A FIFTY THOUSAND RUPEES LECTURE.

Sir Jagadis, who was accorded a most enthusiastic ovation on rising to address the gathering, acknowledged his gratitude to the public of Bombay who proved their appreciation of his work by their presence there that evening, and the fact that they had subscribed Rs. 50,000 for the occasion. He then gave a brief explanatory account of the nature and scope of his work, which he had planned and carried out alone for many years amidst many and varied difficulties. He gave an exposition by the aid of one of the delicate instruments of his own invention of how plants respond to various sounds and tunes and the beautiful colour display which was observed in this connection appeared as though he were a magician with a wand.

PLANTS UNDER ANAESTHETICS

The Doctor explained the meaning and significance of the thunderbolt which has been adopted as the symbol of the institution. He explained also the special uses to which the various parts of the buildings would be put. The fact was brought out that the entire building and grounds had been designed to suit the special needs of the Institute and care had been taken to make it as far as possible self contained. An interesting feature of the garden close to that portion which forms the residence of Sir Jagadis was the open platform perched above two trees, transplanted under anaesthetic conditions. A variety of apparatus is displayed under these trees and the platform is intended for observation or meditation or both. Dr. Bose here explained how trees when transplanted frequently died under the shock of the operation just as human being sometimes died, not from an operation but from the shock caused thereby. Similarly he had discovered and proved that trees could, like human beings, go through severe operations and survive the shock, if placed under the influence of an anaesthetic.

SOME PHENOMENA OF PLANT LIFE

The Professor explained next other experiments which he had performed on plants and whose results had exhibited the close parallel which plant life bears to human life. With the aid of another delicate instrument he showed how the growth of plants can be influenced by drugs and the demonstration on the screen of the manner in which the slow growth of a plant can be thus expedited was one of extraordinary interest. One was able to see the flame of life moving up the screen and recording at intervals the stages of growth, a lengthening of the intervals between each recorded glow illustrating the acceleration of growth as soon as the drug was applied. The instruments necessary to record this phenomenon are of extraordinary delicacy, and barely survived the strain of the journey from Calcutta.

ELECTRICITY AND AGRICULTURE

The last experiment was in regard to the effect of electricity on plant life. He referred particularly to the fact that it was his aim to discover the law of growth and atrophy among plants. Such a discovery had a great bearing on the future of agriculture and would revolutionise world thought. Electricity, he explained and illustrated, would promote or retard the growth of life by reaction. In England and other countries electricity had been applied to agriculture but without exact knowledge of its varying effect on plant life. He then showed by another apparatus of extreme delicacy that electricity might retard and even repel as well as promote the growth of plant life. But if the law of growth and decay could be ascertained, it was possible to regulate the control of life under most varied conditions.

Amrita Bazar Patrika, 29-1-1918.



UNITY OF LIFE

Under the auspices of the Bombay University, Sir Jagadis Chunder Bose delivered on Thursday, the 31st January 1918, a lecture on the "Unity of Life." It was illustrated by lantern slides and an instructive exposition was given of some of his unique discoveries in the realm of Plant Life....

HIDDEN HISTORY IN PLANTS LIFE

"The subject of my address to-night is the 'Unity of Life.' Under a placid exterior there is a hidden history on the life of the plant. Is it possible to make the plants write down their own autographs and thus reveal their history? In order to succeed in this we have first to discover some compulsive force which will make the plant give an answering signal, secondly, we have to invent some instrument of extreme delicacy for the automatic conversion of these signals into an intelligent script; and last of all, we have ourselves to learn the nature of the hieroglyphics."

Sir J. C. Bose then explained the principle of his epoch-making Resonant Recorder which writes down the perception period of the plant within a thousandth part of a second, and writes down the action of light and warmth and drugs on the plant; the effect of vitiated air, of passing clouds, of excess of food and of drink.

"The plant is very human in its virtues and weakness. Plants like animals become exalted, grow tired or despond. An easy green-house life makes them less than themselves, overgrown and flabby, capable of response, till they have become hardened by adversity to a fuller existence. A time comes when after an answer to a supreme shock, there is a sudden end of the plant's power to give any further response. This supreme shock is the shock of death. Even in this crisis there is no immediate change in the placid appearance of the plant. Drooping and withering are events that occur long after death itself. How does the plant then give its last answer? In man at the critical moment a spasm passes through the whole body and similarly in the plant I find a great contractile spasm takes place. This is accompanied by an electrical spasm also. In the script of the Death Recorder the line that up to this time was being drawn, become suddenly reversed and then ends. This is the last answer of the plant.

"These our mute companions, silently growing beside our door, have now told us the tale of their life-tremulousness and their death-spasm in script that is as inarticulate as they. May it not be said that this story has a pathos of its own beyond any that we may have conceived?

"We have now before our mind's eye the whole organism of the perceiving, throbbing and responding plant, a complex unity and not a congeries of unrelated parts. The barriers which separated kindred phenomena in the plant and animal are now thrown down. Thus community throughout the great ocean of life is seen to outweigh apparent dissimilarity Diversity is swallowed up in unity.

"In realising this, is our sense of final mystery of things deepened or lessened? Is our sense of wonder diminished when we realise in the infinite expanse of life that is silent and voiceless the foreshadowings of more wonderful complexities? Is it not rather that science evokes in us a deeper sense of awe? Does not each of her new advances gain for us a step in that stairway of rock which all must climb who desire to look from the mountain tops of the spirit upon the promised land of truth?"

Sir Jagadis then gave a most interesting exposition of his researches with the aid of magic lantern slides.

SENSITIVENESS IN PLANTS

Referring first of all his discovery of sensitiveness in plants, he said that in that respect they were akin to the human system. He illustrated this truth by a demonstration of the reaction that takes place in the frog when a shock is communicated and side by side presenting the reaction that is similarly effected in the plant. "Plants have a nervous system like our own," he said, and with the aid of an enlarged illustration of the mimosa he showed the changes that took place when the plant was disturbed. Turning to plant autograph, he spoke of the Resonant Recorder, a special apparatus which he has invented to prove how even plants are tuned to environment. Certain tunes had no effect on plants, he said, while others had and he asked them specially to observe the beautiful and variegated colour formation produced by their response to tunes. He gave an interesting experiment on this point, and both Lord and Lady Willingdon tried it. There was a great outburst of cheering, which was renewed each time the effect was produced, and it was noticed that the cheering, which was vociferous had its own effect. It had taken him a long time, he said, to produce and perfect the complete apparatus to determine the latent mimosa and by the aid of that apparatus, he was able to record the movement of the plant to one thousandth of a second.

He next went on to say that all plants were endowed like ourselves, but at first the news was received with great scepticism. He did not despair, however, of success and was continuously engaged in discovering, in collecting fresh evidence. Thanks to the action of the Government of India in sending him on a world tour, he got at last the opportunity to prove before the scientific societies of the world, the truth of his discoveries. An illustration of the Mimosa which has accompanied him in his world tour was screened.

The next illustration was to show how long plants took to feel shock and what time they took to recover. Like the great human system plants were subject to periodic conscianimal [sic., consciousness?] had their periods of sleep and awakening. The extra water pressure produced during sunset had nothing to do with true sleep. Plants, too, were subject to exaltation and depression and at certain hours of the day they were fully conscious and active while at other hours they were dormant and lazy. He showed by means of a chart that they were fast asleep between 6 and 9 in the morning and his humorous remark that in that respect they had taken a leaf from our modern society ladies provoked a great deal of laughter. A series of records were then shown to illustrate the various degrees of plant consciousness, which were deeply appreciated by the audience.

Proceeding Dr. Bose said that plants were far more conscious of nature than human beings and described his experience how plants were sensitive even to passing clouds, which produced on them a depressing effect. He spoke of the difference between thin and wiry grown plants and those that were stout and robust. In that respect they resembled again human beings and thin and wiry grown plants were far more susceptible of excitement than the others. They, too, needed rest and without it, they were flabby and depressed. A cartoon from the London "Punch" entitled "A successful Trial" was screened to the merriment of the audience, in which the Professor was humorously depicted by that journal, after his exposition before the Royal Institute in London. He gave an illustration of the "Praying Palm of Faridpur" and the changes it exhibited to environment. All plants displayed similar power and these changes were no longer inscrutable. They had been brought within the realm of scrutability [sic.] and could be recorded.

"PROTECTING" PLANTS

It was a mistake to suppose that when "protected" plants would thrive better. Mothers had a tendency to keep their children away from contact with the outside world with a view to "protect" them. He had placed a plant under a glass case and the effect of it was he had a gloated and effete specimen, flabby-looking in appearance and weary under adversity, they recovered sooner and their growth was healthy just as it evolved true manhood in men. It had been commonly believed that carbonic acid gas was conducive to plant growth. That was a great mistake. In sunshine, plants readily absorbed it; but it was no more true that plants thrived on CO_2, than did human beings. He illustrated the effect of carbonic acid gas as well as oxygen. The latter was as much necessary for plants to thrive on as it was for them. Another illustration exhibited the effect of alcohol on plants and he declared amidst laughter that alcohol produced the same alternate maudlin depression and exaltation on plants that is to be observed on the human system. He said that this experiment had tickled the Americans a great deal and referred to a conversation he had with Mr. Bryan, who was a teetotaller, regarding alcohol given to plants. Some American papers had given characteristic headlines to introduce his lecture on the effect of stimulus to plants.

Another plant Desmodium which has accompanied him in his world tour was filmed on the screen. He spoke, next, of the apparatus which he had invented to record plant pulsation and the struggle they exhibited between life and death. Poisons had as much effect on plants as on men, and they could be revived by applying antidotes, this was illustrated by another chart. Another point of interest dealt with by him was the effect of warm water on plants, and he gave an exposition of his discovery to show that plants died when placed in 60 degree (centigrade) warm water. He referred to the stupendous phenomenon of invisible writing by means of which the plant recorded its own evolution.

The lecture was listened to with profound interest and lasted for an hour. Mr. Setalvad proposed a hearty vote of thanks to the Chancellor for presiding at the meeting. Lord Willingdon, in acknowledging it, said that the vote of thanks was due to Sir Jagadis rather than to himself. As he had anticipated in the beginning, the lecture had proved absorbingly interesting and he was afraid Sir Jagadis's discoveries might be positively alarming when he next visited Bombay. He hoped that they would accord Sir Jagadis a hearty vote of thanks with "true Bombay cordiality." After a few suitable remarks by Sir Jagadis the meeting terminated.

Amrita Bazar Patrika, 5-2-1918.



THE AUTOMATIC WRITING OF THE PLANT

On the 8th February 1918, Sir J. C. Bose delivered the following discourse on 'The Automatic Writing of the Plant,' at the Bose institute:—

Sir J. C. Bose spoke of two different ways of gaining knowledge, the lesser way is by dwelling on superficial differences, the mental attitude which makes some say 'Thank God I am not like others:' The other way is to realise an essential unity in spite of deceptive appearance to the contrary. He had recently been on a visit to the western Presidency, he went there as a stranger, but he has come back with a pang at parting from kindreds. Never in his life did he realise so vividly as now the great unity that drew together all who regarded India as their home and place of work. They were bound to each other by mutual ties of dependence. He had for many years been engaged in discovering community in physical manifestations of life. Now he has realised an abiding unity in the highest manifestations of human life, in community of thoughts and ideals.

In the wide expanse of life itself few things would appear so strikingly different as the life activities in plants and in animals. But if in spite of the seeming differences, it could be proved that these life activities are fundamentally similar, this would undoubtedly constitute a scientific generalisation of very great importance. It would then follow that the complex mechanism of the animal machine, that baffled us so long, need not remain inscrutable for all time, for the intricate problems of animal physiology would then naturally find their solution in the study of corresponding problems under simpler conditions of vegetative life. That would mean an enormous advance in the science of physiology, of agriculture, of medicine, and even of psychology.

How then are we to know what unseen changes take place within the plant? The only conceivable way would be, if that were possible, to detect and measure the actual response of the organism to a definite testing blow. When an animal receives an external shock it may answer in various ways; If it has voice, by a cry, if dumb, by the movement of its limbs. The external shock is the stimulus, the answer of the organism is the response. If we can make it give some tangible response to a questioning shock, then we can judge the condition of the plant by the extent of the answer. In an excitable condition the feeblest stimulus will evoke an extraordinarily large response, in a depressed state even a strong stimulus evokes only a feeble response, and lastly, when death has overcome life, there is an abrupt end of the power to answer at all.

Prof. Bose then explained the principle and action of his apparatus by which the plant attached to it is automatically excited by successive stimuli which are absolutely constant. In answer to this the plant makes its own responsive records, goes through its own period of recovery, and embarks on the same cycle over again without assistance from the observer at any point. In this way the effect of changed external conditions is seen recorded in the script made by the plant itself.

It has been thought that plants like mimosa alone were sensitive. But Sir J. C. Bose's apparatus demonstrated the unsuspected fact that every plant and every organ of every plant answered to a shock by a contractile spasm, as by an animal muscle. If perception of feeble stimulus be taken as a measure of ascent in the scale of life then the superiority of man must be established on a foundation more secure than sensibility. The most sensitive organ by which we can detect electric current is our tongue. An average European can perceive a current as feeble as six micro-amperes, a micro-ampere being a millionth part of the electric unit. Possibly the tongue of a Celt is more excitable, and I have no doubt that my countrymen can easily boast the Celt in this particular test. But the plant mimosa is ten times more excitable than the tongue of an advocate in this province.

Professor Bose then showed how identical were the effects of light, warmth and various drugs on the plant and animal. These experiments bring the plant much nearer than we ever thought. We find that it is not a mere mass of vegetative growth, but that its every fibre is instinct with sensibility. We are able to record the throbbings of its pulsating life, and find these wax and wane according to the life conditions of the plant, and cease in the death of the organism. In these and many other ways the life reactions in plant and man are alike, and thus through the experience of the plant, it may be possible to alleviate the sufferings of man.

Amrita Bazar Patrika, 9-2-1918.



CONTROL OF NERVOUS IMPULSE

At the first anniversary meeting of the Bose institute, held on the 30th November 1918, Sir J. C. Bose gave the following discourse on his recent discoveries relating to the question of control of nervous impulse, under the Presidency of His Excellency Lord Ronaldshay, Governor of Bengal.

It is one of the greatest of all mysteries how we are put in connection with the external world: how blows from without are felt within. Our organs of sensation are like so many antennae radiating in various directions and picking up messages of many kinds. All of these, when analysed to their utmost, consist of shock effects on different chords. An extremely feeble stimulus is below the limit of perception, a moderate stimulus transmits excitation, which is perceived as sensation of not an unpleasant character, but the tone of sensation becomes painful when the excitation is very intense. Our sensation is thus coloured by the intensity of the nervous excitation that reaches the central organ. We are subject to human limitations, through the imperfection of our senses on the one hand, and over-sensibility on the other. There are happenings which elude us because the impinging stimulus is too feeble to waken our senses; the external shock, on the other hand, may be so intense as to fill our life with pain.

Since we have no direct power over the shocks which come to us from the outside world, is it possible to control the nervous impulse so that it should be exalted in one case, and inhibited or obliterated in the other? Does advance of science hold any such possibility? This question is plainly fraught with high significance.

PROBLEM OF CONTROL OF NERVOUS IMPULSE

Before proceeding further it will be necessary first to obtain a clear idea of the function of a nervous tissue and its characteristics; secondly the manner, in which the nervous impulse is propagated; and lastly, we have to discover some compulsive force by which the impulse may be intensified or inhibited during transit. The nerve circuit may be liked to an electric circuit, and invisible impulse bringing about response in the indicator, be it the brain or the galvanometer. In the electric circuit the conducting power of the metallic wire is constant, and the intensity of the electric impulse depends on the intensity of the electric force applied. If the conducting power of the nerve were constant then the intensity of the nervous impulse and its resulting sensation would depend inevitably on the intensity of the shock from outside which starts the impulse. In that case the possibility of the modification of our sensation would be an impossibility. But there may be a likelihood that the power of conduction possessed by a nerve is not constant but capable of change. Should this surmise prove to be correct then we arrive at the momentous conclusion that sensation itself is modifiable, whatever the external stimulus. For the modification of nervous impulse there remains only one alternative; namely, some power to render the vehicle a very much better conductor or a non-conductor according to particular requirements. We require the nervous path to the supra-conducting to have the impulse due to feeble stimulus brought to sensory prominence. When the external blow is too violent we would block the painful impulse by rendering the nerve a non-conductor.

Under narcotic the nerve becomes paralysed and we can by its use save ourselves from pain. But such heroic measures are to be resorted to in extreme cases, as when we are under the surgeon's knife. In actual life we are confronted with unpleasantness without notice. A telephone subscriber has an evident advantage, for he can switch off the connection when the message begins to be unpleasant. Statesmen or politicians have been known to cultivate convenient deafness; but that is a mere pretence. The unpleasant things heard, would still continue to rankle. It is not every one that has the courage of Mr. Herbert Spencer who openly resorted to his ear plugs whenever his visitor became tedious.

The lecturer then explained that the propagation of nervous impulse is a phenomenon of transmission of molecular disturbance. It occurred to him that the transmission could be controlled if he succeeded in discovering a compulsive force which would confer on the conducting particles two opposite molecular dispositions, one of which would exalt and the other resist the impulse. His experiments were first conducted with the primitive type of nerve which he had previously discovered in plants. In full confirmation of his theory, he succeeded in conferring on the nervous tissue two opposite dispositions. Under favourable disposition the nerve is rendered supra-conducting; subliminal stimulus now becomes fully perceived. Under the opposite molecular disposition the violent impulse due to excessive stimulus becomes weakened or arrested during transit, and the plant remains quite unaffected by the external shock.

The lecturer has in his previous works demonstrated the unity of life-reactions in the plant and animal. A climax is now reached when by the application of identical treatment he is able to confer alternately on the same animal nerve, supra-conducting or non-conducting property at will. Under a particular molecular disposition the experimental frog perceived and responded to stimulus which had hitherto been below its threshold of perception. Under the opposite disposition violent tetanic spasm caused by the irritant salt applied to the nerve became at once quelled. The normal property of the nerve was at once restored on the withdrawal of the predisposing force.

MAN VICTORIOUS OVER CIRCUMSTANCE

Thus by the control of molecular disposition of the conducting nerve, nervous impulse, and the resulting sensation may become profoundly modified. The external is not so overwhelmingly dominant, and man is not to be merely passive in the hands of destiny. There is a latent power which would raise him above the terrors of his inimical surroundings. It remains with him that the channels through which the outside world reach him should, at his command be widened or become closed. It may thus be possible for him to catch those indistinct messages that had hitherto eluded him or he may withdraw within himself, so that in his inner realm, the jarring notes and the din of the world should no longer affect him.

The whole audience heard the discourse with spell bound interest. The Indian Scientist came to that realisation by experiments at which the Indian Jogis of yore arrived by intuition. Following an absolutely original line inventing his own apparatus of the most simple yet subtle delicacy and having constructed them by the hands of Indian artisans, working without collaborators and with the smallest modicum of recognition by his fellow scientists, he has pursued his investigation to a result which has been a revelation to the whole world. Dr. Bose has proved that man and plant are one body and life in their physiology, in their vital habits and nervous responses. He has clearly demonstrated that nervous life in the plant responds to the same stimuli as in human beings. He has established between animal and plant a unity of incipient mind. The plant not only lives and dies, wakes and sleeps but it makes the responses which in animal would be pleasure and pain.

Dr. Bose has made a great step towards the unification of knowledge. A bridge has been built between man and inert matter. Even if we take Dr. Bose's experiments with metals in conjunctions with his experiments on plants, we may hold it to be practically proved for the thinker that Life in various degrees of manifestation and organisation is omnipresent in Matter and is no foreign introduction or accidental development, but was always that to be evolved.

The ancient thinkers knew well that life and mind exist everywhere in essence and vary only by the degree and manner of their emergencies and functionings. All is in all and it is out of complete involution that the complete evolution progressively appears. It is only appropriate that for a descendant of the race of ancient thinkers who formulated that knowledge, should be reserved the privilege of initiating one of the most important among the many discoveries by which experimental science is confirming the wisdom of his forefathers.

Amrita Bazar Patrika, 4-12-1918.



MARVELS OF GROWTH AS REVEALED BY THE "MAGNETIC CRESCOGRAPH"

[Sir J. C. Bose has recently invented the "Magnetic" crescograph. It is a supersensitive instrument and the very high magnification obtained by it surpasses all existing appliances. By this instrument, phenomena hitherto beyond the reach of investigation can now be studied with great precision. It shows ultra-microscopic changes inducted in a growing organism even by a puff of smoke or a gentle breeze, by a passing cloud or fleeting brightness. This super magnifier was exhibited for the first time by Sir J. C. Bose before an appreciative gathering 10-1-1919. A number of lady students, professors, lawyers, doctors and several eminent personages gathered to hear the great Indian scientist.]

In his Discourse on the above subject on Friday, Sir J. C. Bose illustrated how the limitations imposed on the advance of science by the imperfection of our senses, may stimulate the invention of supersensitive apparatus which reveals to us the existence of phenomena hitherto unknown. Thus the invention of the microscope from a simple lens magnifying 3 or 4 times into progress up to 1500 diameters has given birth to new sciences. But still higher magnification is demanded in unravelling the mystery of movements associated with the simplest type of life as seen in plants. Greatest potentiality in life is often latent; the gigantic banian tree grows out of a thing which is smaller than the mustard seed. Within the seed-coat the dormant life remains in safety, protected from dangers outside. The seeds may thus be subjected without harm to cold so intense as will freeze mercury into solid and air into liquid. Winds and hurricanes scatter the seed of life and the cocoa-nut rides the tumultuous waves till anchored safe in an island yet to be inhabited. In due season there begins a series of most astonishing transformations; the latent life wakens, and the seedling begins to grow. The root turns downwards and the shoot upwards. Underground, the root winds its way round stones and obstacles towards moist places. Above ground the stem bends as if in search of light. Tendrils twine about a support. These visible movements are striking enough, but within the unruffled exterior of the plant body there are others, energetic and incessant, which escape our scrutiny. The bending of a growing organ towards or away from stimulus must be due to unequal growth on two sides of the organ, a retardation of growth on the proximal or acceleration on the distant sides. Various theories have been advanced which have proved inadequate. For the identical stimulus of gravity produces one kind of curvature in the root and the very opposite in the shoot. The possibility of direct experimental investigation has been frustrated by the excessive slow rate of growth rendering accurate measurement impossible.

THE SLOWNESS OF GROWTH

The movement of growth is two thousand times less rapid than the place of the proverbially slow-footed snail. Taking the average annual growth in height of a tree to be 5 ft., it will take a tree a thousand years to cover a distance of a mile. We take a piece of 2 ft. in the course of half a second, during the interval plant grows through a length of 1,100,000 part of an inch or half the length of a wave of light. For investigation on the effect of external conditions on growth we have to measure even a fraction of that excessively small length.

The peasant has eagerly watched the growth of his plants on which his own life and the world's depend and, even realised something of its vicissitudes, so the vegetable physiologist has here one of the many problems of his science. The invention of growth-measuring instruments has thus been one of his main endeavours. He has hitherto succeeded by the use of levers with unequal arms to obtain a magnification of about 20 times, and even then it takes many hours for growth to become perceptible; owing to the practical impossibility of maintaining the external conditions constant for so many hours, the results of measurement of growth become vitiated. It is therefore necessary to produce a magnification so high that growth should become measurable in less than a minute. The first improvement effected by the lecturer, now some fourteen years ago, was his Optical Lever, which at once raised the magnification from 20 to 1000 times, an advance which at the time seemed to many incredible, but it is at length coming into use in advanced laboratories in Europe.

THE RECORDING CRESCOGRAPH

A new apparatus devised by the lecturer, the Recording Crescograph, is described in the Transactions of the Royal Society, and of the Bose Institute. By a compound system of levers the magnification is raised to 10,000 but this is not without great technical difficulties, which cost five years of efforts to overcome. Thus the levers require to be extremely light; this was secured by the use of an alloy of aluminium used in the construction of Zeppelins: this combines lightness with rigidity. Another difficulty almost unsuperable arises from the friction at the bearings of the fulcrum, the best watch jewels made of ruby were employed, but the supply was cut off from Germany by the war. This proved a blessing in disguise, for it forced the lecturer to devise a new principle of suspension using local material. This was found in practice to be far superior to jewel bearings, which became clogged by invisible dust particles present in the air. With this Recording Crescograph many phenomena of extreme interest have been discovered. The plant itself not only recorded its normal rate of growth but the slightest change induced in it by the action of different forces. So delicate was the apparatus that it analysed growth into a series of pulses, a sudden shooting out followed by a partial recoil. It showed how the growth of the plant was retarded by a mere touch, and the time it took the plant to recover from the effect of contact, and all these in course of a few seconds. The effect of different food on growth, the effect of different drugs, or living capacity these and many more became revealed by the automatic record made by the plant. This has opened out fresh and more exact method of medical inquiry, and of practical agriculture.

THE MAGNETIC CRESCOGRAPH

Such unlooked for results called for yet higher magnification, and at first it seemed that further multiplying lever might be added to the previous system. But this failed on account of added mass and friction; and some altogether new solution had therefore to be sought. Material contact having proved unworkable the ideal weightless and frictionless linking was obtained by introducing a new magnetic contrivance, and this with the surprising potency of magnification from 5 to 100 million times. The mind cannot grasp the meaning of this stupendous magnification; how then could we translate it in terms which may be understood? Let us take once more our slow-footed snail, a magnification of ten million times would convert its speed to something for which there is no parallel even in modern gunnery practice. The 15 inch cannon of the "Queen Elizabeth" has a muzzle velocity of 2360 ft. per second or 8-1/2 million feet per hour. But the speed of the snail when magnified ten million times would render it 200 million ft. per hour or 24 times faster than the fastest cannon shot. We may next turn to the cosmic movement for a parallel: A point in equator whirls round at the rate of 1037 miles per hour. But a snail with the magnified speed would beat the earth by going round 40 times during the period the earth makes but one revolution!

LIFE IN STATE OF SUSPENSE AND ITS SUBSEQUENT RESOLUTION

With the experiments carried with the Magnetic Crescograph life becomes subservient to the will of the experimenter. The rate of growth is indicated by the speed with which a spot of indicating light moves across the scale. The actual rate of growth is fifty thousandth part of an inch per second; this under magnification is seen by the indicating spot of light to move at the rate of 36 inches per second: this is the normal rate. The plant is made to imbibe soda water and the growth becomes suddenly exalted some ten times; but a puff of tobacco smoke instantly retards the rate. To induce further retardation a depressing drug is next applied. The growth gradually comes to a stop and the quiescent of the spot of light shows life in a state of suspense. The plant is now hovering in an unstable poise between life and death, a slight tilt one way, and life gets interlocked in the rigidity of death. But the antidote is applied just in time, the torpor and suspense is over, and life renews her activity once more with the fullest vigour.

It is true that man is but poorly provided for his voyage of discovery in seas unknown, he can hear little and see less. A single octave of light circumscribes his vision; even of the visible the size of the ripple of light imposes an impassable barrier. But he has not been deterred by his limitations but has on the contrary been spurred on its greater efforts in his explanation of the invisible. The mysterious movements of life are not to remain for him inscrutable and indecipherable for all times: but his untiring and single-minded pursuit will someday reveal to him the secret that lies behind the manifestations of life.

Amrita Bazar Patrika, 13-1-1919.



THE NIGHT-WATCH OF NYMPHAEA

Sir J. C. Bose gave the following Discourse on the 'Night-Watch of Nymphaea,' at the Bose Institute, on the 24th January, 1919.

[Sir J. C. Bose's discourse delivered at the Bose Institute, on the 24th January, 1919, dealt with the mysterious phenomenon of recurrent opening and closure of flowers. Some of them open in the morning and close in the evening; others do exactly the opposite opening at night and closing during the day. These various effects have been described as the 'waking' and 'sleep' movements of plants. The subject had attracted the attention of plant physiologists for more than half a century. After summarising the various results lost in his recent work says that no satisfactory explanation of the sleep movements of plants has yet been forthcoming and that the true theory can only be established after new and exhaustive research. This investigation has been in progress at Sir J. C. Bose's laboratory for the last five years; and special automatic recorders have been invented by means of which numerous plants have been recording their movements for every hour of the day and night and for many days in succession.]

In course of his discourse the lecturer said "The poets have forestalled the men of science. Why does the water-lily 'Kumud or Nymphaea' keep awake all night long and close her petals during the day? Because the water-lily is the lover of the Moon and like the human soul expanding at the touch of the beloved, the lily opens out her heart at the touch of the moon beam, and keeps watch all night long; she shrinks affrighted by the rude touch of the Sun, and closes her petals during the day. The outer floral leaves of the lily are green, and in the day time the closed flowers are hardly distinguishable from the broad green leaves which float on the water. The scene is transformed in the evening as if by magic, and myriads of glistening white flowers cover the dark water.

"The recurrent daily phenomenon has not only been observed by the poets, but an explanation offered for it. It is the moonlight then that causes the opening of the lily, and the sunlight the movement of closure. Had the poet taken out a lantern in a dark night; he would have noticed that the lily opened at night in total absence of the moon; but a poet is not expected to carry a lantern and peep out in the dark; that inordinate curiosity is characteristic only of the man of science. Again the lily does not close with the appearance of the sun; for the flower often remains awake up to eleven in the forenoon. A French dictionary maker saw Cuvier, the Zoologist about the definition of the crab as 'a little red fish which walks backwards.' 'Admirable,' said Cuvier. 'But the crab is not necessarily little, nor is it red till boiled; it is not a fish, and it cannot walk backwards. But with these exceptions your definition is perfect.' And so also with the poet's description of the movement of the lily, which does not open to moonlight, nor yet close to the sun."

THE 'SLEEP' AND 'WAKING' OF JHINGA FLOWER

The waking and sleeping of the water lily is by no means an isolated instance. My attention was first drawn to another remarkable floral display by the folk song which begins with:

"Our day of work is over Like life's span, but an hour! For now behold the gold-starred fields Of opening 'Jhinga' flowers!"

Since then I witness every afternoon a glorious transformation in my experimental garden at Sijbaria on the Ganges. The gardener has planted a large field with Jhinga (Luffa acutangula). The flowers when closed at day time are very inconspicuous, the lowest whorl of the sepals being dull green: in my afternoon walk I can hardly recognise the old familiar field, which is now covered with masses of flower in their golden glory. Here also the flowers remain open throughout the night; but they close early in the morning and the fairy field of cloth of gold vanishes suddenly.

COMPLEXITY OF THE PROBLEM

The revolutions made by the plant-scripts led to the discovery of certain new and unsuspected reactions in the life of plants, notably the influence of variation of temperature in modifying thegeotropic curvature. There are at least ten variables, which by their joint effects give rise to over a thousand variations in the resulting movement of plants. The effect of each of these different factors has been isolated and a new theory propounded which offers a complete explanation of the so called sleep movements. The life reactions of plants to the various stimuli of the environment was most strikingly illustrated by means of supersensitive Magnetic Crescograph. The plant was shown to perceive the shock of light, to which it made an answering signal, so also to the action of warmth and cold. And it was explained how the various combinations of effects induced by environmental change found diverse expressions in the movement of plants.

The scientific explanations offered for the opening and closing of the water lily is that the flower is closed under sunlight and that the opening takes place under darkness. But Prof. Bose has been able to keep the lily awake even in day time by placing it in a cool place. Simultaneous record of the movement of the flower and the thermograph of daily variation of temperature proved conclusively that a rapid fall of temperature in the evening brought about the opening of the flower, at first slowly then rapidly, and by 10 p.m. the flower was fully expanded. About 6 a.m. in the morning there is a rise of temperature, and the reverse movement of closure sets in. The flower continues to close very rapidly the sleep movement of closure is complete by about 10 a.m.

It will be seen how different flowers through their sensitiveness to heat and cold execute movements of "sleep" or of "waking." Some of them have the healthy habit of normal humanity to sleep at night and keep awake at day-time. Others turn night into day, and make up for their long night watch by sleeping it off at the day-time.

Amrita Bazar Patrika, 25-1-1919.



WOUNDED PLANTS

Sir J. C. Bose delivered the following lecture on the 'Wounded Plants' at the Bose Institute, on the 7th February, 1919:—

It is a little over four years now that the Embodiment of World Tragedy stalked over Western Europe. The fair field of France and the bright sky was under a pall of battle-smoke. Our sight could not penetrate through the dense gloom, and the mortal cry of the wounded and dying, drowned by hoarse roar of a thousand did not reach our ear. But from the time the Sikh and the Pathan, the Gurkha and the Bengali, the Mahratta and the Rajput flung themselves in front of battle from that day our perception has become intensified. The distant cry of those whose life-blood has crimsoned the white field of snow, has found reverberating echo in our heart. What is that subtle bond by which all distances are bridged over, and by which an individual life becomes merged in larger life? Sympathy is that bond by which we come to realise the unity of all life. Before us are spread multitudinous plants, silent and seemingly impassive. They too like us are actors in the Cosmic drama of life, like us the play thing of destiny. In their checkered life, light and darkness, the warmth of summer and frost of winter, drought and rain, the gentle breeze and whirling tornadoes, life and death alternate. Various shocks impinge on them, but no cry is raised in answer. I shall nevertheless try to decipher some chapters of their life history.

When a man receives a blow or shock of any kind, his answering cry makes us realise that he is hurt, but a mute makes no outcry. How do we realise his sufferings? We know it by his agonised look by the convulsive movement of his limbs, and through fellow-feeling realise his pain. When a frog is struck it does not cry, but its limbs show convulsive movement. But from this it does not follow that the frog is not hurt, for some would urge that there is a great gap between us and lower animals. One who feels for the humblest of His creatures alone knows whether the frog is hurt or not. Human sympathy always aspires: it is sometimes extended to equals, hardly ever to inferiors. And so it happens that many would doubt, whether the lowly and the depressed possess the fine sense of the exalted to feel the same joy and sorrow, and to resent social tyranny. When human attitude is so finely discriminative as regards different grades of his own species, it might be extravagant to believe that the frog could have any consciousness of pain. A concession might however be made that the frog perceives a shock to which it responds by convulsive movements. It is as well that we should be careful about the use of terms for an eminent biologist insisted that animals never felt any pain: when an oyster is swallowed alive, it did not, according to him, feel any pain but rather a sensation of grateful warmth at contact with the alimentary tract. The question will remain undecided for no one has as yet returned from the gastric cavity of the tiger to expatiate on the exquisite sensation.

TEST OF LIVINGNESS

Responsive movements being a test of life, we shall try to construct a scale with which the height of livingness may be measured. What is the difference between the living and the dead? The living answers to a shock from without; the most lively gives the most energetic, the torpid or dying the feeblest, and the dead no answer at all. Thus life may be tested by shocks from without, the size of the answer being the gauge of vitality. The answer of the strong will be violent and almost explosive in its intensity, while the weakling will barely protest. The responsive movements may be recorded by suitable apparatus. The successive responses to similar shocks will remain uniform, if the living tissue remained always the same. But the living organism is always in a state of change for environment is always building us anew, and we are changing everyday of our life. We are thus subject to change, some day we are in a state of high exuberance, and other time in a state of lowest depression: we pass through numerous phases between the two extremes. Not merely does the present modify, but there is also the subtle impress of memory of the past. The sum total of all these characterise one individual from another. How is the hidden to be made manifest? To test the genuineness of a coin, we strike it and the sound response betrays the true from the false. The genuine rings true and the other gives a false note. In this way perhaps the inner history of different lives may be revealed by shocks and the resulting response.

EFFECT OF WOUND

There are three separate investigations that have been carried out on the effect of wound on plants: The first is the shock effect of wound on growth: this generally speaking retards or arrests growth. In the second series of investigations the change of spontaneous pulsation of the leaflet of the Telegraph plant was recorded. Death begins to spread from the cut end of the leaflet, and reaches the throbbing tissue which becomes permanently stilled on cessation of life. Experiments are in progress of arrest their march of death, and the cut leaflet which died in 24 hours has now been kept alive for more than a week.

PARALYSIS OF SENSIBILITY

Another series of investigations were carried out on the paralysing effect of severe wound. A leaf of Mimosa was cut off from the plant, and the subsequent histories of the wounded plant and the detached leaf are curiously different. The cutting of one of its leaves had caused a great shock to the parent plant, and an intense excitation spreads over to the distant organs. All the leaves remained depressed and irresponsive for several hours. From this state of paralysed sensibility, the plant gradually recovers and the leaves begin to show returning sensitiveness. The detached leaf, when placed in a nourishing solution soon recovers, and holds up its head with an attitude indicative of defiance, and the responses it gives are energetic. This lasts for twenty four hours, after which a curious change creeps in the vigour of its responses begins rapidly to wane. The leaf hitherto erect, falls over; death had at last asserted its mastery.

Amrita Bazar Patrika, 10-2-1919.



LIFE AND SPEECHES OF EMINENT INDIANS

THE HON. PANDIT MADAN MOHAN MALAVIYA. His Life and Speeches. (Second edition, revised and enlarged). 700 pages. Price Rs. 3.

LOKAMANYA B. G. TILAK. An exhaustive and up to date collection of all the soul stirring speeches of the apostle of Home Rule with a valuable appreciation by Babu Aurobinda Ghose. Second edition, revised and enlarged. Price Rs. 2.

MAHATMA GANDHI. His Life, Writings and Speeches with a foreword by Mrs. Sarojini Naidu. (Enlarged and up to date edition). Over 450 pages. Tastefully bound with an index. Price Rs. 2.

MOHOMED ALI JINNAH. With a Foreword by the Rajah of Mahmudabad. Over 320 pp. Attractively bound with a portrait and an index. Price Rs. 2.

BABU SURENDRANATH BANERJEE. An exhaustive collection of all the speeches of Babu Surendranath Banerjee delivered in England. Price As. 8.

INDIA FOR INDIANS. A collection of the speeches delivered by Mr. C. R. Das on Home Rule for India with an Introduction by Babu Motilal Ghose. Second Edition, revised and enlarged. Price As. 12.

SIR RABINDRANATH TAGORE. His Life, Personality, and Genius, by K. S. Ramaswami Sastri, B.A., B.L. with a Foreword by Mr. J. C. Rollo. Price Rs. 3.

J. N. TATA. His Life and Life Work. By Sir D. E. Wacha. 3rd edition. Price Re. 1.

GANESH & CO., PUBLISHERS, MADRAS.



JUST PUBLISHED

The New Economic Menace to India

BY

BABU BIPIN CHANDRA PAL

PRICE RS. 2.

THE END

Previous Part     1  2  3  4
Home - Random Browse