p-books.com
Scientific American Supplement, No. 561, October 2, 1886
Author: Various
Previous Part     1  2  3     Next Part
Home - Random Browse

79. What is an arch, of how many forms, and of what may it be constructed?

80. Can you state how you would find the thickness of an arch of stone, span and rise being given?

81. Define the intrados and extrados of an arch.

82. Where should the line of resistance to pressure be found in an arch in order to retain its stability?

83. Can you find the thickness of the abutments, the rise and span of the arch being given?

84. In a semicircular arch, where is the horizontal thrust greatest and where least?

85. Name the common kinds of stone used in building.

86. Define the terms "quarry-faced," "rough-pointed," "fine-axed," "bush-hammered," as applied to the dressing of stone.

87. Describe "rubble" masonry, "ashlar" masonry, and "broken ashlar" masonry.

88. What are "headers" and "stretchers"?

89. What should be the proportion of "headers" to "stretchers"?

90. How would you prepare the foundation for a heavy wall, and how deep should it be excavated?

91. How are walls founded on soft or yielding materials?

92. Describe a good quality of bricks, and state how you would know a good brick from a poor one.

93. In how many ways is brickwork "bonded" to make good work in heavy walls?

94. What is hydraulic cement, and how many kinds do you know of?

95. Which do you consider the better quality, Rosendale or Portland, and why?

96. What is mortar composed of, and how mixed?

97. What kind of sand should be used, and how do you test its quality?

98. What is the meaning of the term "setting" as applied to cement?

99. How would you test cement?

100. What is concrete, of what composed, and in what proportion should its ingredients be mixed?

101. Name the common kinds of wood used in building.

102. What kind of timber resists decay longest under ground?

103. How may timber be preserved from decay?

104. What do you understand by limit of elasticity as applied to a beam under strain or pressure? What is meant by the neutral axis of a beam?

105. What is the tensile strength of a good quality of wrought iron per square inch?

106. For what parts of a structure may cast and wrought iron be used in reference to tension and compression?

107. Make a sketch of the form of cast-iron beam best adapted to resist a transverse strain.

* * * * *



CELEBRATION OF THE FIVE HUNDREDTH ANNIVERSARY OF THE UNIVERSITY OF HEIDELBERG, AUGUST, 1886.

The wave of pleasure and enjoyment which flooded everything has passed. Heidelberg, usually so quiet, assumed the role of a city of the world, and all was bustle and excitement in the streets, which were hung with flags and other decorations. The trains constantly brought new accessions to the crowd, and gayety and mirth reigned supreme.

The dedication of the renovated Aula of the University served as a prelude to the festivities of the week. On this occasion a splendid flag, embroidered by order of the wives of the faculty of the Academy, an equally costly cover for the scepter, and a silver inkstand were added to the treasures of the University. Conspicuous among the numerous presents received were a richly carved set of furniture—the gift of former students from Switzerland—and all the publications of certain book dealers.

On the afternoon of August 2, the Grand Duke and Duchess arrived in Heidelberg, where they were received with much enthusiasm. They remained at the modest palace during the time of the jubilee, and whenever they appeared they were greeted with expressions of patriotism and love. On the evening of the 2d, the Oberburgermeister, Dr. Wilckens, extended a hearty welcome to the guests who had gathered in the over crowded hall. Vincenz Lachner conducted the musical part of the entertainment, which was charming. The German Crown Prince arrived early on the 3d, so as to accompany his royal cousins to the service in the beautifully decorated Heiliggeistkirche, on which occasion Prof. Bassermann spoke with great effect. At 11 o'clock, the Court appeared in the Aula, where the Grand Duke presided, in virtue of his office of "Rector Magnificentissimus." His address was followed by those of the Crown Prince; the Prorector Geheimrath, Dr. Bekker; Edward Zeller, of Berlin; Jules Zeller, of Paris; and others. In the evening the citizens and strangers were attracted to the Jettenbuehel by the festival at the castle; from 7:30 until 10 o'clock the nobility held court in the Bandhause. The scene was like fairyland, all the outlines of the castle were marked by thousands of small lights, and the court was lighted by great candelabra. In the ever-increasing crowd it was difficult to find a place and to obtain refreshments, which were given out in immense quantities by the State.

On the morning of the 4th the people thronged again to the Heiliggeistkirche to listen to the address of the Geheimrath, Dr. Kuno Fischer, on the fate of the Palatinate and Heidelberg, which was preceded and followed by music. After this the participants in the festival were brought together by a dinner in the Museum Hall, and seldom have speeches so inspired an audience as did those of the Grand Duke and the Crown Prince. Never has Heidelberg seen such a torch-light procession as that formed by the students in honor of their Rector; 3,000 torches lighted him to the City Hall. He thanked them, and proposed cheers for the Crown Prince.

On the morning of the 5th there was the presentation of degrees. In the afternoon a special train carried four hundred people to Karlsruhe, where the royal party held a great reception. The capital was decorated with flags, the city parks were lighted with Bengal lights, there was music, and a song by the patriotic bard Vierordt was sung.

All the splendor and interest shrank into insignificance before the grand historical procession on the morning of the 6th, which made a lasting impression on the minds of all. The throng of 100,000 people watched quietly while the whole history of the Palatinate passed in review before them. The procession illustrated this history much better than it could have been told by any professor or any book. There was not a vacant space to be found, extra trains having brought more spectators, and yet everything passed off quietly and without accident. In the evening there was a heavy shower, which freshened everything, leaving no ill effects to be seen the next morning, which was more than could be said of many of those who attended the imposing Commerse of the Heidelberg students. As a former student, the Grand Duke appeared among the 6,000 visitors at the Commerse, where he presided and spoke enthusiastically of the Emperor. Other speeches followed, until the conversation became so animated that even Von Treitschke, who was received with an ovation, could not be heard. At midnight the court retired and the Fidelitas succeeded to their rights.

On the 7th the time was spent in excursions and carousing until the illumination of the castle began. I never saw an illumination of the ruins which could compare in beauty with that of the 7th. The night was favorable for fireworks, until finally they were rivaled by the moon, numerous boats trimmed with colored lanterns passed along the river, there were fire-wheels on the bridge, water fireworks on the river, and the quiet was disturbed alternately by the rockets and music, and when the names of the Grand Duke and Duchess, crowned with brilliant fire, appeared over the water, there was an involuntary outburst of enthusiasm. If the old Elector and Electoress could have been present at the closing entertainment of the jubilee, on the evening of the 8th, they would have rejoiced to see the new life brought to the ruins by their successor.—Illustrirte Zeitung.

* * * * *



MANUFACTURE OF LEATHER IN RUSSIA.

From this extensive paper it appears that the matters chiefly used in tanning are the bark of the oak, containing from 6.04 to 4.37 per cent. of tannin according to the season, that of willows, of the elm, and the birch. The leaves of the arbutus, employed in the governments of Kasan, Viatka, and Perm, contain about 16 per cent. of tannin, while the root of wild sorrel (Rumex acetosella) contains 12 per cent. For removing the hair from hides, a lye made from wood ashes is still employed. The softening of the leather is effected by means of the excrement of dogs, which acts on the leather by means of the biliary acid present, which forms with soda a kind of soap. After tanning, white Russia leather is coated with a mixture of tar and seal oil. Black Russia leather is dyed with alum, extract of sanders, and ferrous sulphate. Horse hides are tanned to a great extent for sole leather.—M. Ryloff.

* * * * *



IMPURITIES IN PHOTOGRAPHIC CHEMICALS, AND TESTS FOR SAME.

[Table referred to in a paper read before the Birmingham Photographic Society by G.M. JONES, M.P.S.]

- SUBSTANCE IMPURITIES TESTS. POSSIBLY PRESENT. - Ammonia, Carbonic acid Renders lime-water milky. NH{3} Molec. Wt. 17 Dissolved solid Residue left on evaporation. matter Chlorides After acidulating with nitric acid, it gives a precipitate with silver nitrate, which after washing is readily soluble in ammonia and reprecipitated by nitric acid. Sulphates After acidulating with nitric acid, it gives a precipitate with barium nitrate. Lime A white precipitate with oxalate of ammonium. Lead is often Black precipitate with sulphureted present, derived hydrogen. from the action upon flint glass bottles Nitric acid. Traces of After dilution it gives a H, NO{3} sulphuric acid precipitate with barium nitrate. Molec. Wt. 63 Chlorides After dilution it gives a precipitate with silver nitrate. Peroxide of nitrogen The acid is yellow. Iodine may be After dilution and cooling it gives present if the acid a blue color with starch, paste, be prepared from or mucilage. sodium nitrate Hydrochloric Free chlorine Liberates iodine from solution acid, HCl of potassium iodide. See also Molec. Wt. 36.5 "Chlorides," nitric acid. Sulphuric acid As above for nitric acid. Perchloride of iron Yellow color. Brown precipitate with ammonia added till it smells slightly. Sulphuric acid, Bisulphate of Residue on evaporation. H{2}SO{4} potassium Molec. Wt. 98 Sulphate of lead Milkiness on dilution. May be completely freed from lead by diluting with three or four times as much water, and allowing to settle. Acetic acid Water Does not solidify when cooled (glacial), to 17 deg. C. (53 F.) H C{2}H{3}O{2} Molec. Wt. 60 Sulphurous and White precipitates with silver hydrochloric nitrate. acids Aldehyde, or Blackens in the light after adding volatile tarry silver nitrate. matter Organic sulphuric Smell of garlic. acid Citric acid, Tartaric acid Strong solution of potassium. H{3}C{6} Acetate added to a strong solution H{5}O{7}H{2}O of the acid will deposit white Molec. Wt. 210 crystalline bitartrate. Pyrogallic acid Metagallic acid Black residue, insoluble in water. (C{6}H{3})HO{3} Molec. Wt. 126 Silver nitrate, Free nitric acid Reddens litmus paper. (Neutral AgNO{3} silver nitrate does not Molec. Wt. 170 affect litmus.) Potassium Chlorides and Same as for ammonia. carbonate sulphates K{2}CO{3} Molec. Wt. 138 Potassium Potassium carbonate A strong solution is alkaline to iodide, KI test paper. Molec. Wt. 166 Sulphates and Same as for ammonia. chlorides Potassium iodate A pretty strong solution becomes yellow from liberation of iodine on addition of dilute sulphuric acid or, better, a strong solution of citric acid. Potassium Similar to See potassium iodide. bromide, KBr potassium iodide Molec. Wt. 119 Sodium carbonate, Chlorides and Same as for ammonia. Na{2}CO{3} sulphates Molec. Wt. 106 Sodium chloride, Chloride of calcium Oxalate of ammonium (after NaCl Chloride of addition of a little acetic acid) Molec. Wt. 58.5 magnesium gives a milkiness, or precipitate, indicating calcium; filter this out and add ammonia, chloride of ammonium, and phosphate of sodium (clear solutions). A precipitate indicates magnesium. Both the above cause dampness in wet weather. Sodium sulphate As for "sulphates" in ammonia. Potassium Potassium carbonate Effervescence with dilute acids, cyanide, KCN nearly always giving off a gas carbonic Molec. Wt. 65, present anhydride, which renders and hydrate, KHO lime-water turbid. Molec. Wt. 56 Kaolin Chalk Effervescence with dilute acids. Water, Sulphates and Same as for ammonia. H{2}O chlorides Molec. Wt. 18 Calcium carbonate, Deposited by boiling. Test as temporary hardness for calcium chloride. See sodium chloride. Ammonia, almost Brown coloration, or always present in precipitate with Nessler's distilled and rain reagent. water Gelatine Alum Ash, sometimes as much as ten per cent. Fatty matter Separated by precipitation with alcohol. Dissolved out by ether or benzine, and left as a residue on evaporation of the solvent. Ammonium bromide Potassium bro- Leaves a residue when heated. (NH{4})Br mide or other Molec. Wt. 98 non-volatile bodies Ammonium chloride Same as for chlorides in ammonia. Pyrogallic acid Powdered glass Left behind on solution. Potassium iodide Potassium bromide The crystals of bromide are usually more transparent than those of iodide, but no reliance can be placed on this. Silver nitrate Potassium nitrate, Will not yield the full quantity sometimes present of chloride on precipitation in the fused with HCl. Gives a purple color to sticks not in flame. the crystals Sulphuric acid When vended as pure, No easy test can be given, as the it invariably substances are so numerous some of contains a trace of them volatile, and most require iron. Common acid is separation from the acid before also liable to detection. contain arsenic, selenium, thalium, and many other substances. Organic matter, as Gives a brown color to the acid. a piece of straw in a carboy of acid Hydrochloric acid Arsenic Marsh's test. Some yellow samples Reinsh's test; a small piece of contain no iron, copper foil becomes coated but an organic salt, on boiling in dilute acid. and give an alkaline ash on ignition of the residue after evaporation Calcium chloride Calcium hydrate The clear filtered solution made with distilled water is alkaline to test paper, and gives a precipitate on breathing into it through a tube. Pure (?) chemicals Broken glass, bits These impurities either float or generally of straw, wood, sink on solution, and may easily paper, etc. be seen. -

G.M. JONES, M.P.S.

* * * * *



THE CATASTROPHE AT CHANCELADE.

The Chancelade quarries near Perigneux, which caved in Oct. 22, 1885, under circumstances that are still fresh in the minds of all, have gained a celebrity that renders it unnecessary for us to revert to the details of the catastrophe. It will suffice to recall the fact that after the accident a private committee was formed for the purpose of making an attempt to save the five victims who had been surprised in the drifts, and who happened to be in the bottom levels.



The Lippmann establishment at once offered to make a boring by means of which it would be possible to communicate with the galleries in which the men were imprisoned, but, despite the most active efforts, success was found impossible. In order to satisfy public opinion, the committee resolved to bore a well 12 inches in diameter to a depth of 23 feet, that should permit of reaching the gallery; but this did not render the latter accessible. How was it to be seen what had occurred, how was it to be made certain that the men were dead, and that all hope of rescue must be abandoned? To Mr. Langlois, a Parisian photographer, was confided an order to construct a special apparatus which might be let down to the bottom of the well by a cord, and which, being capable of operating from a distance, should furnish the required information through sensitized plates. As may be seen, this operation presented peculiar difficulties, although Mr. Langlois was enabled to overcome these with much skill.

The photographic apparatus that the ingenious operator constructed was contained in a metallic case that could be let down into the bore hole. The upper and lower parts of the contrivance were provided with incandescent lamps, that could be lighted or extinguished from a distance, by means of conductors. The photographic apparatus, properly so called, formed of an objective and camera with its sensitized plate, was inclosed in a cylinder 31/2 inches in diameter. By means of a cord drawn at the mouth of the well, the apparatus could be made to issue from its vertical sheath, and to pivot around its axis so as take views in different directions (Fig. 1).

The entire affair was suspended by twelve-foot iron rods, connected with each other end for end.

In using the apparatus, the operating was done in a shanty, which served as a dark room. The device was let down into the bore well until it touched bottom. At this moment a cord was pulled so as to raise the camera, and then a few moments were allowed to elapse in order that the apparatus might become immovable. As the objective was all the time in the dark, it had neither cap nor shutter, but was unmasked from the beginning of the operation.

In order to form an impression on the plate, it was only necessary to give light; this being easily done by passing an electric current by means of a commutator, so as to light the incandescent lamps. At the end of the exposure, the lamps were extinguished and the entire apparatus was immersed in darkness. The mean time of exposure was from four to five minutes. The apparatus was then hauled up, and the negative developed.

The experiments could be renewed as often as necessary, and the apparatus be pointed in all directions by turning it a certain number of degrees by means of a lever attached to the upper rod. In this way were obtained various views of the inaccessible gallery in different planes.



We reproduce herewith two of Mr. Langlois' most interesting photographs. One of these shows the head of the corpse of a young miner whose face stands out in relief against the side of the gallery (Fig. 2) the other shows a wheel and a lot of debris heaped up pell-mell (Fig. 3).

The series of proofs obtained from small negatives, two inches square, gave the completest sort of information in regard to the aspect of the subterranean gallery.

The exact place where the boring had been done and the entire and broken pillars were recognized, as was also the presence of two corpses, thus showing that it was indeed here that it would have been necessary to act in order to render aid to the unfortunates.



In Fig. 4 is shown the appearance of the great fault that caused the accident at Chancelade. It seems to us that this method of photographing inaccessible subterranean galleries ought to receive numerous applications in the future.—La Nature.

* * * * *



SOMZEE'S NEW GAS-BURNERS.

With the object of effecting a very intimate mixture of gas and air, and of causing this mixture to reach the point of ignition at as high a temperature as possible, M. Leon Somzee, of Brussels, has designed several new forms of gas burner, which we now proceed to describe and illustrate, from particulars and by drawings kindly supplied by an esteemed Brussels correspondent.

The high-power burner shown in Fig. 1 effects perfect combustion of the heated mixture of air and gas, which is introduced by the draught determined by the arrangement. What chiefly distinguishes this burner from others of its class is the fact that it is perfectly suited to domestic lighting—that is to say, it may be arranged for a comparatively small consumption of gas, while giving an increase of 250 per cent. of light.



The burner proper is a cage or basket of specially prepared magnesia, which yields a warmer tone of light than any obtained hitherto, while not requiring so high a temperature before combustion. The cap, made of a fire-resisting substance, fits on to a tubular arrangement, R, fixed in the upper portion of the body of the burner. The latter is supplied by air entering at the cone, O, which terminates the inner chamber, K, of the heater, and also by that drawn in by the rising column of gas, passing before the orifices, D, which may be regulated at will. The small burner, I, which is kept constantly alight, heats the central compartment, K, the sides of which transmit heat to the gas circulating in the annular casing, L, of the compartment. The heated gas passes, by the passage, AA, into the space, C, where it becomes intimately mixed with the air entering at OP, and also with the outer air arriving by the lateral apertures, D.

The vis viva of the jet is diffused through this mixture, which thus becomes very intimate, when it penetrates into the tubular arrangement, R; combustion now taking place at the top, while the refractory cap emits a bright orange light of great steadiness. As it is not the flow of gas which determines the entrance of the outer air, the former may be used at any pressure—an advantageous arrangement in all respects.

When the small burner, I, in the lower chamber is lighted, the products of combustion issue by the orifice, O, of the compartment, terminating in a needle like that of the steam injector; and the jet draws along the air entering the apertures, PP, above the cone. The gas from the pipe, arriving from the annular space, L, fills the two lateral pockets shown in dotted lines, and passes through the orifices, AA, which communicate with the upper chamber of the burner. The manner in which it is conveyed thence to the tubular arrangement has already been described.

Fig. 2 shows a more simple method of carrying out the same principle, and of effecting a considerable saving in gas for a given intensity of light. In this form, a wick, T, impregnated with an alkaline earthy solution, a few seconds after lighting, affords a focus of white light remarkable for its steadiness and brilliancy. A draught of air is created by a jet of gas issuing from the hollow needle, B, and passing through the vessel, D, which is provided with orifices, O, for the entrance of air. The air and gas pass from D into C, whence (after their intimate mixture is effected) they pass into the tubular arrangement, F, at the top of which combustion takes place.

To regulate the proportions in which the air and gas should mingle, in order that the combination should be as intimate as possible, the air inlet is made variable by a perforated collar, which permits of the orifices, O, being more or less covered. The other proportions of the burner—that is to say, the relative capacity of the two compartments and the length of the hollow needle—are determined by the sectional area of the supply-pipe for the gas, which is admitted under moderate pressure. Instead of a wire-gauze cap, impregnated with a solution of metals or of salts, two fine platinum wires may be used—one bent into the form of a semicircle of about an inch radius, and the other (of slightly larger diameter) rolled spirally round the former. When both ends of the two wires are connected with the upper portion of the tubular arrangement (which in this case is flattened), and the gas is ignited at the burner, the metallic arc becomes red hot, and then brightly incandescent, emitting a light, less brilliant indeed than with magnesia, but of remarkable steadiness.

In this case the production of light is chiefly due to the fact that calorific condensation, caused by the use of the helicoidal coil surrounding the curved wire, prevents loss of heat in this conductor. In these forms of high-power burner, in which the gas is used directly for the production of light, the difficulty generally encountered of heating the air (present in a larger volume than the gas) has been successfully overcome.

Fig. 3 shows the straight and outspread flame burner with a special heater. In this arrangement the gas and air are heated before combustion, in the compartment, G, directly exposed to the action of a small Bunsen burner, R, which is placed (in an opaque glass) in the middle of a lyre-shaped figure formed by the two gas-pipes, AA. The burner proper consists of two fine annular passages meeting above, and emitting a thin annular sheet of gas over the guide, T, made of a white refractory substance placed between the two annular jets. The object of this guide is to stretch the incandescent sheet of flame, composed of several jets, and interpose friction, so as to prevent a too rapid ascent of hot gases.



The luminous focus is placed within a glass globe, C, mounted on the bell, B, of the heater; and the external air enters this bell, mingling with the products of combustion of the heating burner, R. The portion, D, of the annular passage, B, being made of a highly conductive metal, the gas becomes heated in passing to the burner, so that both gas and air are raised to the same temperature by the time they reach the orifices of the burner. Instead of prolonging the gas-pipe to the point of bifurcation, a chamber may be arranged immediately below the guide, for the gas and air to become intimately mixed by passing through several perforations or wire gauze, receiving the excess of heat from the white porcelain guide. The admission of gas to both the main and heating burners is regulated by a double valve in the pipe; but this arrangement may be used without any previous heating of the gas and air.

Fig. 4 shows a similar arrangement to that above described, but reversed; the gas and air being previously heated by the products of combustion. The two pipes, D, lead the gas to the burner; and the incandescent sheet of flame is drawn over a white refractory substance, having in its center an orifice through which the hot gases rise to the upper portion of the burner. The luminous sheet is spread out all the better on account of this return of the flames, which also causes the mixture of air and gas to be more complete than when they rise directly. The gas escapes horizontally from the orifices of the annular burner, B, and mingles with the double current of hot air which rushes in above the flame inside the globe, and also below through the central portion of the burner.

This lamp throws its light vertically downward; and its illuminating power may be increased by providing, above the incandescent sheet, a reflector, which diverts into a useful direction the rays thrown toward the ceiling. In this arrangement of lamp the flame is excessively condensed by its being turned back over the refractory guide; and this condensation greatly favors the production of light. On the other hand, the combustion of the gas is very perfect, because the currents of hot air are thrown directly upon the two sides of the flame; and thus the reciprocal action becomes more intense. Lastly, the division of the gas into a large number of small jets, in contact with which the hot air forms an intimate mixture, causes a greater quantity of molecules to partake in the combinations; thus affording a proportionate increase of temperature in a given space and time.



Owing to these various circumstances, the final effective duty of this burner is advantageous, so that it yields an illuminating power which may be put at from 200 to 250 per cent. above that of ordinary burners, and about 25 per cent. more than that of other regenerative burners. The flame is comparatively steady; the loss due to the friction over the white porcelain being almost eliminated, because the flame only presses upon the guide for a small portion of its surface, and is only spread out to the extent of its dark zone.

The contact between the incandescent sheet of flame and the guide may be made as short as desired, and the motion of the gaseous mass be directed by a simple button placed in the center of the burner; thus giving the form shown by Fig. 5, which, however, differs from the previous figure in the fact that the inverted flame is directed outward instead of inward.

In this arrangement the button, T, is fixed in the middle of the burner, which is made cylindrical and annular, or may consist of a ring of small tubes, to which the gas is led by a single pipe; leaving the whole "furnace" free for the circulation of air and the products of combustion. This is the most recent development of the principle patented by M. Somzee in 1882, viz., the formation of an illuminating sheet of flame, spread out laterally, while heating the gas and air by the products of combustion.

Figs. 6 and 7 show two forms of burner designed especially to give economical results with a small consumption of gas. The former is an ordinary Argand burner in which hot air is introduced into the upper portion of the flame, so as to increase the activity of combustion. The luminous sheet of flame is then spread out by a metal disk attached to the end of the tube, D, which introduces the air into the flame. The outer air becomes heated in its passage through the wire gauze, T, which absorbs the heat liberated in the interior of the apparatus, and also that which is radiated from the incandescent sheet and reflected by a metal shield, P, surrounding the dark part of the flame.



It is the combustion of gas, without the production of useful luminous effect inside the shield, which supplies the reflected as well as radiated heat to the air. The temperature is still further increased by the heat transmitted to the metal portion of the burner, and absorbed by the wire gauze, between the close meshes of which the air from outside is forced to circulate. Air is admitted inside the flame by the chimney, D, placed above the focus, and in which it is raised to a high temperature by friction on the upper part of the lamp glass, at E, and afterward by its passage through the horizontal portion of the bent tube. This tube is impinged upon on the outside by the flames, and also by the products of combustion, so that it forms a veritable heater of the currents which traverse it.

The introduction of hot air into the central portion of the sheet of flame is advantageously supplemented by the spreading out of the flame by means of the metal disk, without any possibility of its being divided. In this way a more intense heat is obtained, and consequently the illuminating power is considerably increased, by the uncombined carbon being more readily set free, and being thus kept longer in the flame, F. This burner, which may be constructed for a moderate gas consumption, gives remarkable results as regards illuminating power and steadiness; the abstraction of heat in no way impairing the luminosity of the flame, which preserves all its brightness.

The Argand burner with double chimney, shown in Fig. 7, is also an economical one for a small consumption of gas. The air admitted to both the inside and the outside is raised to a high temperature by passing along the spirals of a second and transparent chimney, C, which surrounds the cylindrical glass, C. The gas itself is heated by passing through this hot chamber before reaching the outlet orifices; so that the mixture of air and gas takes place under the most favorable conditions for their perfect combustion.

The burner is an ordinary Argand, which may terminate below in a small chamber for the gas and air to mingle. But this is not necessary; and the usual arrangement for mixing the air and gas may be adopted. The outer air enters at the top of the central chimney, C and passes into the annular space between the two glasses; then descends by the two spiral passages, which surround the cylindrical glass and terminate in a portion hermetically sealed by a brass plate attached to the supply-pipe. All the parts of the burner are thus surrounded by a highly-heated atmosphere, especially at the bottom of the double chimney; and it will be readily understood that, if the branches which lead the gas to the burner are constructed of a highly conductive metal, the gas will become heated in its turn by passing through passages raised to a high temperature.

The elements are therefore dissociated or separated before their final combination; thereby raising the calorific and luminous effect to the highest possible degree. Such a burner can, of course, be made as small as may be required; thus lending itself admirably to the subdivision of illumination. The only precaution required is to properly proportion the sectional area of the hot-air passages to the radiant surface of the flame, so that the heat does not become too intense at the lower portion of the burner.

Fig. 8 shows a double flame burner on the principle of Mr. Heron's, but with admission of hot air into the angle formed by the flames. As exemplified by Mr. Heron, if two equal batswing burners separately give a certain amount of light, on the two flames being brought into contact, so as to form a single flame, the luminosity is considerably increased, owing to the condensation of heat which results from their meeting. The two incandescent sheets are, as it were, forced into one another, so as to be combined.



The high-power burners of Douglass, Coze, Mallet, and others were designed on this principle; but its application to uninclosed burners was not very satisfactory, because the great cooling down of the inner surface of the flames by the strong draught of cold air impaired their illuminating power. To counteract this difficulty, M. Somzee adopts a heating burner, A, which he places between the two batswing burners, B, so that the products of combustion rise in the angle made by the two lighting flames, as shown; thus greatly increasing their luminosity while maintaining a low consumption of gas.

M. Somzee also raises the illuminating power of an ordinary flat-flame burner by causing an obscure effluvium to traverse the dark portion of the flame. The effect of this is to increase the activity of decomposition in this portion, so that the particles of carbon are the more readily set free, and remain longer in suspension in the luminous zone. The obscure effluvium may be determined between two points by the electric current, or be caused by the heating of an imperfect conductor by the current; or, again, it may result from a metal conductor heated by the reactions produced in the middle of the flame, by separating the cone of matter in ignition. The effect may be compared with that obtained by the concentration of two sheets of flame; but in this case the sheets are formed by the constituent parts of one and the same flame, whence results a more complete utilization of the elements composing it. This system is, in fact, a simplification of the arrangement adopted in the double-flame burner seen in Fig. 8.

Fig. 9 shows a reflecting and regenerative burner with double glass. The crown, made of metal polished on both sides, has a circular groove, G, for receiving the end of the central chimney, C, and presenting an annular aperture by which the products of combustion enter. The second glass, C, is fastened to the collar of the burner carrier, and does not come into contact with the metal crown; so as to allow the air to enter from outside for supplying the burner. The gas enters by the pipe, T, provided with a cock. This pipe is continued to the top of the apparatus, and there spreads out into the form of a dome; thus dividing into two compartments the trunconic chamber, S S squared, whence the hot gas returns to the body of the burner, B.



On the burner being lighted from below, the products of combustion rise in the inner chimney, and enter the heater, which they traverse through its entire extent, while impinging against the outside of the gas reservoir, to which they give up a large portion of their heat. They then pass by the passage, D, into the atmosphere or into a chimney. The air necessary for combustion enters at the top of the outer globe, and becomes highly heated in its passage through the space comprised between the two glasses of the burner. In this way it reaches the burner, and forms an intimate mixture with the small jets of gas which compose the flame. The gas, on leaving the supply-pipe, T, fills one of the compartments, S S squared, of the heater, and then returns by the second compartment, and again descends by the casing of the supply-pipe, having its temperature still further raised by contact with the internal radiation of the flame.

Under these conditions, all the parts of the burner are supplied by heated air, and the combustion becomes very active; thus increasing the intensity of the flame, and consequently that of the light afforded, while at the same time effecting a saving of 50 per cent. of gas. This burner may be made of any size, and for consumptions not exceeding that of an ordinary Argand. In fact, the gas is consumed at a low pressure, escaping with no greater force than that due to the heat of the products of combustion. It is sufficiently expanded on coming into contact with the current of hot air, the activity of which is regulated by the height of the apparatus, that is to say, by that of its two chimneys. The mixture is made in such proportion as to obtain from the gas and air as great a degree of luminosity as possible. The high temperature of the gas, and the independent means of heating the air and gas, constitute the essential principles of this burner.—Journal of Gas Lighting.

* * * * *



THE CLAMOND GAS BURNER.



In this burner, which is a French invention, the light is produced by burning ordinary coal gas within a basket of magnesia, which is thereby brought to a high state of incandescence, and from which a white, steady light is radiated. It may be said to consist of three different parts. The first and inner part is a central column, B, of fireproof material. The second part consists of two concentric cylinders placed round the inner column and communicating one with the other through the cross cuts, J. The third part is a china cup inclosing the other parts, and perforated with a number of holes. The gas burns in two different places. From A it passes directly through B, at the top of which it branches off through tubes to an annular chamber, D, from which it escapes through the openings, a, a, a, where combustion takes place. The other combustion occurs within the circular space, G, I, between the column and the inner of the two surrounding cylinders, through two channels, E E, in the lower part of the central column. The gas passes into a circular chamber, F F, and escapes through small holes in the upper partition of this chamber, where it burns. The product of this combustion passes put into K, through the cross cuts, J. The air entering through the holes, H L, of the outer china cup passes along the inner of the two concentric cylinders, which is heated to redness, and rises highly heated toward the upper annular burner, where the gas burns at a, a, a, in small separate flames, each entirely surrounded by the hot air. This insures perfect combustion of the gas within the basket of magnesia placed above, and which is thus brought to a state of incandescence. It will be seen from this description how simple and practical the arrangement is. It is claimed for the light produced that it will stand comparison with the electric light. Like that, it shows colors perfectly true, and will enable an observer to distinguish between the most delicate shades, allowing of the finest work being executed as by daylight. It is, moreover, stated to be perfectly steady. As the Clamond burner can be fixed to any gas bracket or lamp now in use, its adoption causes no other expense than the cost of the burner itself. There is no expensive installation, and when used in combination with the electric light, it is claimed that a uniform lighting will be obtainable instead of the unpleasant contrast between gas and electricity. Another important advantage obtained by the Clamond burner is the saving effected in the consumption of gas as compared with the same power of light obtained from ordinary burners.

* * * * *



A NEW THERMO-REGULATOR.

In the thermo-regulators which have been constructed heretofore, the heat has been regulated by the variation in the inflow of gas to the heating flame. The apparatus described below, and shown in the accompanying cut, taken from the Zeitschrift fur Instrumentenkunde, operates on an entirely different principle. The distillation and condensation process of a fluid heated to the boiling point in the vessel, A, is as follows:



The steam passes first through the pipes, a and c, into the serpentine tube, where it is condensed, and then flows through the tubes, d and b, back into the vessel, A, if the cock, r, is closed, but if the said cock is open, it flows into the receptacle, K. When the liquid begins to boil the steam passes freely through the tubes, d and b, part passing through the tube, f, out into the air, and the other part passing through the open cock, r, to the receptacle, K; but the condensed liquid soon closes these passages to the steam. At h is an opening for a thermometer, t, and through this opening the liquid can be poured into the vessel, A. If the cock, r, is kept closed, the volume of liquid in the vessel, A, cannot be diminished, and the bath, B, must take the constant and uniform temperature of the steam in the vessel, A, as the vessel, B, is heated evenly on all sides.

This apparatus can also be used as an air bath, in which case the vessel, B, is left empty and closed by a suitable stopper.

* * * * *



PIPETTE FOR TAKING THE DENSITY OF LIQUIDS.

The accompanying engraving represents a simple apparatus, which any person accustomed to working glass can make for himself, and which permits of quickly, and with close approximation, estimating the density of a liquid. In addition, it has the advantage of requiring but a very small quantity of the liquid.

It consists simply of a straight pipette, A B, to which is affixed laterally, at the upper part, a small U-shaped water gauge.

The two branches of the gauge, as well as the pipette itself, are graduated into equal divisions. If need be, the graduating may be done by simply pasting on the glass strips of paper, upon which a graduated scale has been drawn. The zero of the pipette's graduation is exactly at the lower extremity, B. The graduation of the two gauge tubes extends in both directions from a zero situated near the center. The zeros of the two branches must correspond as exactly as possible, so that they shall be in the same horizontal plane when the apparatus is fixed upon a support. To render the apparatus complete, it only remains to adapt, at A, a rubber tube provided with a wire clamp, and terminating in a short glass tube for sucking through with the mouth.



For taking the density of a liquid, we plunge the end, B, into it, and then suck, and afterward close the rubber tube with the clamp. It is essential that this latter shall hold well, so that the levels may remain constant.

We now do the reading. Suppose, for example, we read 250.3 mm. on the pipette, and 147.7 mm. and 152 mm. on the branches of the gauge. Having these data, we loosen the clamp, and allow the liquid to flow. On account of capillarity, there remains a drop in B; and of this we read the height, say 6 mm. A height 250.5 mm - 6 = 244.5 mm. of liquid raised is, then, balanced by a column of water of 147.5 + 152 = 299 mm.

Now the heights of these two liquids is in the inverse ratio of their densities:

d 299.5 —- = ——-, whence d = 1.22. 1 244.5

We obtain d by a simple division.

When the instrument has been carefully graduated, and has been constructed by an expert, the accuracy of the first two decimals may be relied upon. With a little practice in estimating the last drop, we may, in trying to estimate the density of water, even reach a closer approximation. In order to measure the height of the drop accurately, one should read the maximum height to which the liquid rises between the fall of two drops at the moment when the last ones are falling, since at that moment, and only at that, can it be ascertained that the lower level of the bubble is plane. The error in such reading does not reach half a millimeter, and, as a suitable height of the apparatus permits of having columns that vary between 13 and 30 centimeters, an error of this kind is but 1-300. This is the limit of precision of the method.

The clamp might be advantageously replaced by a glass cock, or, better still, A might terminate in a rubber bulb; and a lateral tubulure might be fixed to the pipette, and be closed with a rubber stopper.

This little apparatus is more easily maneuvered than any of those that have hitherto been devised upon the same principle. It is capable also of replacing areometers in ordinary determinations, since it permits of correcting the error in capillarity that is neglected in instruments; and, moreover, one can, when he desires to, easily verify for himself the accuracy of the graduation.—La Nature.

* * * * *



USEFUL BAGS, AND HOW TO MAKE THEM.

By JOHN T. HUMPHREY.

Since the papers on "Boot and Shoemaking," in vol. i. of Amateur Work, illustrated, I think nothing relating to the leather trades has appeared in it; and as there must be many among the readers of this magazine who have a desire to dive deeper into the art of manipulating leather into the various articles of utility made from that material, I will endeavor in the series of articles of which this is the commencement to furnish them with the necessary instructions which will enable them to do for themselves many things which now are left undone, or else have to be conveyed miles to some town where the particular business, or something akin to it, is carried on. To the colonist and those who live in out-of-the-way districts, it must be a matter of great regret to observe articles of use, where the material is in good condition, rapidly becoming useless owing to the inability of the possessor to do the necessary repairs. Again, it may be that the article is completely worn out, and the old proverb that "a stitch in time saves nine," will not be advantageously applied if carried out. In that case a knowledge of making new what we require, whether in order to replace something already worn out or as an addition to our store, must prove beneficial to the thrifty amateur. My object in writing these articles is not to deprive the mechanic of any portion of his legitimate occupation, but to assist those who live at a distance too great to be able to employ him, and who necessarily prefer any makeshift to the inconvenience of sending miles, and being without for days, an article which might possibly be set right in an hour or two.

HOW TO MAKE BAGS.

The old-fashioned carpet bag (Fig. 1) is still unsurpassed by any, where rough wear is the principal thing to be studied. Such a bag, if constructed of good Brussels carpeting and unquestionable workmanship, will last a lifetime, provided always that a substantial frame is used.



Next in order comes the brief bag (Fig. 2), more extensively used than any other. For business purposes it is in great favor with bag users, being made in a variety of shapes, but all belonging to the same class. Here we have the shallow brief, deep brief, eclipse wide mouth, imperial wide mouth, excelsior, courier, and many others; but to know how to make one will be sufficient for all, the only difference being in the cut or style in which they are constructed.



The cricket bat bag (represented in Fig. 3) is made on the same principle throughout as the carpet bag.



Frames and all necessary fittings required in making bags may be purchased of dealers.

Care must be observed in choosing all the pieces necessary for a bag from the same pattern carpet, otherwise it will present an unsightly appearance when completed. There may be some who would prefer American cloth; this is thoroughly waterproof, and has a good appearance for some time, but, like all articles of imitation, it has only cheapness to recommend it. If cloth is to be used (I mean American cloth), let it be the best that can be bought, that which is called "double-twill duck," if possible. As the making is the same whether cloth or carpet be used, it will be understood that the instructions for making apply to both.

The following tools, which are few and inexpensive, will be required: A pair of clams (Fig. 4), cost 1s. 6d.; knife (Fig. 5), 6d.; half dozen awl blades, 1/2d. each; three or four boxwood handles, 11/2d. each; 3 foot rule, 1s.; hammer, 1s.; a packet of harness needles, size 4, cost 21/2d. (these have blunt points); a bone (Fig. 6) will also be required for rubbing the stiffening into place, cost about 3d.; and a ball each of hemp and wax for making the sewing threads—hemp 21/2d., wax 1/2d. For making holes in the bottom where the nails or studs are fixed, a large sewing-awl will be required; this will probably have to be bought at a saddler's; the other tools can all be obtained at any grindery and leather seller's.



The awl blades mentioned above are of two kinds, and either may be used for this work. Those generally used are of a straight diagonal shape, making a perforation the shape of a diamond, *; the others are perfectly round, tapering gradually to a fine point. To fix them in the boxwood handles, place the blade in a vise, leaving the unpolished part above the jaws; hold the handle above this, and commence driving it down, taking care that the blade is penetrating the middle of the handle. Continue tapping the handle until the ferrule reaches the polished part of the blade; it will then be in far enough.

* Transcriber's Note: Original diamond vertical instead of horizontal.

A good serviceable pair of clams may be made by taking two staves of a good-sized barrel, and cutting about 10 inches off the end of each. Screw together with three screws (as in Fig. 4), and shape the uppermost ends so that the outsides meet in a sharp ridge along the top; this will give a flat surface within the mouth, by which a hold of the work may be obtained. A two-inch screw will be long enough for the bottom, which must be turned in as tightly as possible; the others must not be less than 3 inches, as there will be a space of 11/2 or two inches between the staves at the part where they are inserted. Screw these just tight enough to give a good sharp spring to the mouth of the clams when they are pressed open; this will insure the work being held firmly while being sewn. Sandpaper them over to give a smooth appearance, and these will be found as useful as bought ones.

A piece of basil leather will be required for the bottom and welts of the bag. This may be purchased at a leather seller's with the tools. Cut out the bottom first; the welts may be cut from any narrow pieces. These must be cut seven-eighths of an inch wide, then folded over, and lightly hammered down. This brings the two edges together, and when placed in position, they should lie evenly between the edges of the material. A piece of string may be laid in the welt to give it a fuller appearance if the leather is very thin.

The following dimensions of bags when made up will enable the maker to choose the most useful size:

No. 1, 16 by 14 inches; No. 2, 19 by 16 inches; No. 3, 21 by 17 inches; No. 4, 24 by 18 inches.

The sizes of frames and parts when cut will be as follows:

Frame. Sides. Bottom. Gussets.

No. 1, 15 inches 161/2 by 151/2 161/2 by 51/2 151/2 by 51/2 No. 2, 18 inches 191/2 by 171/2 191/2 by 6 17 by 6 No. 3, 20 inches 211/2 by 181/2 211/2 by 61/2 181/2 by 61/2 No. 4, 23 inches 241/2 by 191/2 241/2 by 61/2 191/2 by 61/2

Taking No. 1, 161/2 inches will be the length of sides and 151/2 inches the depth. The gussets are also 151/2 deep, the width being 51/2, the same as the bottom. Take 11/2 inches from the depth of these to allow for covering the frame, and 1/2 inch from the length to allow for the seams, and we have a bag 16 inches long by 14 inches deep.

And now to commence. Arrange the pieces of carpet on the board, and mark off the size of each part required with a piece of chalk or pipeclay. By cutting with the carpet, laying the right side up, we shall be able to see that the pattern of it will be in the same direction on both sides of the bag when made up. We next take the ball of hemp, and by pushing the finger through the hole in the center of it, drive out the end. To use the hemp from the inside is much the best way, because the ball will stand perfectly still, whereas, if started from the outside, it will be darting in all directions about the floor of the workroom, and entwining itself around any obstacle which lies there, unless it is placed securely in a box and drawn out through a hole in the center of lid.

A hook must be fixed in some convenient place to make the waxends on, or, as they are called in the trade, "threads," which term it will be as well to call them by here; thus a four-cord thread means a thread or waxend containing four strands of hemp, a six-cord contains six strands, and so on. One of the greatest difficulties for the amateur is to produce a well-formed thread. He generally finds it thicker a few inches from the point than at any other part. These are known in the trade as bull-necked threads; and as the mechanic finds it difficult to use them when his employer starts a new apprentice and gives him this job for the men, I must impress on the worker here the necessity of making them as perfect as possible. It would be as well if a little practice was given at breaking the hemp in the way which produces good points. Better waste a few yards of hemp than be compelled to abandon a thread after making only a few stitches with it.

Gripe the hemp firmly between the thumb and forefinger of the left hand, leaving about eight or nine inches hanging loosely down; lay this over the thigh of the right leg, and with the right hand rub it in a downward direction, which will cause the twisted strand to loosen. One good stroke should be sufficient; if not, it must be repeated until the fibers forming the strand are quite loosened. By holding it close to the end with the right hand, and giving it a jerk with the left, the fibers will break, and the ends of the strands formed in this way are placed at a little distance one above another, which, when twisted, form a smooth, tapering point.

To cast off a thread the proper way is to stand at a distance of about three feet from the hook previously mentioned, and by holding the end of the hemp in the left hand, pass it over the hook and bring it down with the right, then holding with the left and breaking as above. When sufficient strands to form the thread have been broken off, carefully examine the points to see that they taper properly, and have no lumps in them. Rub the wax up and down a few times, so that the thread may be properly waxed on that portion which will be inside when twisted. Hold the two ends in the left hand, and with the right roll each end separately down the right leg a sufficient number of times to twist the thread throughout. Judgment will be required in this operation, or the thread will be a constant source of trouble if it is over-twisted. Wax it again, and then it is ready for use. See that the points are well waxed, then take a needle and pass the point of the thread through the eye until it nearly reaches that part which would stop its progress.

It must now be turned down on to the thicker portion and carefully twisted. Smooth it down, then take the other end of thread and another needle, and fasten it on in the same way. In selecting the awl to be used, do not take a very large one. The hole should be just large enough for the thread to require a slight pull to get it through.

To commence sewing take one side and a gusset and place them evenly together, the right side of the material being inside, and fix them in the clams. Slip the welt as previously described between the edges, and pass the awl through the lot. Drive it perfectly straight, as upon this chiefly depends a nice seam when turned. Draw out the awl, and by following the point, pass up the bottom needle with the left hand. This should be taken by the thumb and forefinger of the right hand and the thread pulled through half its length, so forming a thread of equal length on each side. Make another hole with the awl about one-third of an inch from the first. This gives the length of stitch. Pass up the bottom needle as before into the right hand, the top needle descending to the bottom immediately after. Take hold of this with the left hand and pull through the threads simultaneously top and bottom, until the extremity on each side lies on and forms the stitch. Be careful that in pulling in the latter part each thread closes at the same time, thereby preventing a crooked seam. Repeat until the seam is finished, then take the other gusset and place in position. Sew this, then take the other side of bag and sew to the gussets. You will then have something in the shape of a bag, minus the bottom. Take this next, and fix each corner to one of the seams previously made, and stitch it carefully round, placing a welt in as before. At the end of each seam a stitch or two back should be taken or the thread tied over to prevent it opening.

The outside of the bag being inward, it must now be turned previous to stiffening and framing. The turning is done by placing the bag over the left arm, and with the right hand commence pushing in one of the corners, then the opposite one until that end is reversed. Then serve the other end in a similar manner, and smooth each seam along.

We now take a piece of stout millboard (an old ledger book cover will do if large enough), or, if purchased with the frame, ask for a two pound board: this will cost about 4d., and be sufficient for several bags. Cut it quarter of an inch less than the bottom all round, and see that it fits before gluing it in. To do this, place one end within the seams at one end of the bag, and by lifting it in the middle press in the other, when the stiffening will lie within the four seams at the bottom. Having fitted it satisfactorily, take it out again and glue it well with some good hot glue. This must be neither too thick nor too thin. The best way to prepare it is to lay some glue in cold water for twelve hours. It will absorb sufficient water in that time, and can be boiled up without any further preparation. The quicker it is fixed after the glue is put on the better. A brush similar to a paint brush will be the best to apply it with, and need not cost more than 6d. After the gluing, lay it aside for a few hours to allow it to thoroughly set, during which time the making of the handles can be proceeded with. On some bought bags these are very common, and seldom last more than a few months; the usual plan being to take a piece of rope about the size of a clothes line and roll a piece of brown paper round it, covering it afterward with a piece of basil leather.

Procure two pieces of brown harness leather—the shoulder of the hide is most suitable—from a saddler, 11 inches long by 1-1/8 inches wide, round the four ends, and make a compass mark 1/8 of an inch from the edge all round for the stitching. Take a piece of line as above, and place within the leather, which most likely will have to be damped to make it draw round easier. Leave 11/2 inches from each end for sewing to the bag, the line also being so much less than the full length of the handles. Having sewn them, flatten the ends and bend the handles into a semicircular shape, and leave them to dry.

By this time the glue holding the stiffening to the bottom of the bag will be set, so the next move will be to put in the studs or nails. Take the largest size awl and make five punctures through the bottom, about three-quarters of an inch from each corner and one in the center, as in Fig 8; push the nails through and turn down each of the two claws in an opposite direction, tap them with a hammer to make them lie closer, and also to prevent them from becoming loose. This done, we next take the frame and remove the key-plate from it.

Fold the sides of the bag well over the frame, so that the stitching will get a good hold of the part that goes inside. Put a stitch through at each corner to hold it, and see that it sets perfectly true on the frame. A space is left between the two plates of iron forming the frame, which allows of the bag being sewn through it. Fix the key-plate by riveting inside. Sew the bag from one corner of frame to the other corner on each side, leaving the gussets unstitched. It is now ready for the lining. Let this be good, as it will greatly add to the durability of the bag if strong. Coarse linen at 8d. to 10d. per yard is the best material for this purpose. The sides and bottom may be cut in one piece; the length of this will be twice the depth of one side of carpet (less the part which folds over the frame) and the width of the bottom. The width of this piece throughout to be a half inch less than the outsides were cut. The gusset lining will want to be the same width as the gusset, but an inch less in length will do. The seams of the lining may be stitched with an ordinary household sewing machine if good thread is used. When made, place the lining inside the bag, see that it is well down at the bottom, turn in the top edge all round to the required size, and fix in as follows: Take a long carpet needle and a length of thread, pass the needle through the lining at the folded ridge and bring it up again through the same at a distance of an inch or so. This forms a stitch within the lining; pass the needle through one of the stitches made in sewing in the frame and repeat as before, carefully observing that the lining falls into its proper place as it is being sewn in. Continue in this way until the two sides are done, leaving only the gussets and gusset lining to be united. This is done by folding the edges inward and sewing them together, the frame joints moving freely between the gussets and lining. We have now only the handles to put on and it is complete. Sew these on with a five cord thread well waxed. To protect the lock against being unduly strained when filled, a strap and buckle may be put on between the handles and each end of the frame, as in Fig. 3.

Next in order is the cricket bat bag, which should always be comprised in the outfit of the amateur cricketer, as well as of the professional. In making this we follow the instructions given for the carpet bag. It may be made either of carpet, tan-canvas, or leather, the latter, of course, being the strongest and most expensive. Carpet will not require to be described, but a brief description of tan-canvas and leather may be of service to the amateur in assisting him to choose something for himself.

Tan-canvas, as used for bags and portmanteaux, is a strong, coarse material of a brown color; it wears well, and has one advantage over carpet—it is thoroughly waterproof.

Leather is, of course, superior to carpet or canvas, but there are a few tricks in its manufacture which it may not be out of place here to mention as a caution to the amateur that the old saying, "There's nothing like leather," is a thing of the past where the general appearance of an article is meant. The genius of the inventor has produced machinery which gives to paper, linen, and other stuffs the appearance of the genuine article, whereas it does not contain one particle of it. At one time, when a hide of leather was required to be of the same thickness all over it, the currier would work at the flesh of the skin with a shaving knife, gradually scraping the thick parts away until it was reduced to the required substance. Now it is done in a few minutes. The hide is passed whole between the rollers of a splitting machine against the sharp edge of a knife, which reaches from one side of the machine to the other, a distance of 10 or 12 feet. This knife is so gauged that any thickness can be taken off at one operation, the part taken off resembling the hide in size and shape. The top or grain of the hide is then dressed and finished off brown, if for brown hides; or, if to be used for enameled hides, they are dyed and japanned. These are called either brown or enameled cow-hides, according as they are finished off, and are used for all the best class of Gladstone, brief, and other bags. The bottom or fleshing of the hide is also dyed and japanned, and when finished, exactly resembles in appearance the hide itself, and is very difficult for the novice to tell when made up into bags or any other article. These are called splits, and having had the best part of the skin taken from them, do not wear one-fourth the time the grain will. The black enamel soon chips off, which gives them a worn-out appearance.

To make a bag 36 inches by 12 inches by 8 inches requires a frame 36 inches long, the sides 361/2 inches by 14 inches, gussets 14 inches by 81/2 inches, bottom 361/2 inches by 8 inches. The lining will be 36 inches by 12 inches for the sides, gussets 13 inches by 8 inches, bottom 36 inches by 8 inches. For the handles two pieces of leather 12 inches by 2 inches. The straps and chapes are sewn on quite close to the frame, straps 10 inches long by 1 inch, chapes 41/2 inches by 1 inch. Cut a slit in the middle of the chape for the buckle tongue to go through, and pare the under side at the end so that it is not too lumpy when sewn on to the bag. Cut two loops 3 inches long by 3/4 inch wide for the points of straps to go through.

The brief bag must be made of leather, and as there is the same amount of work in making it, whether it be of split or hide, it will be sure to give greater satisfaction if the latter is chosen. The manufacture of this bag differs considerably from the others. The sides and gussets in the carpet bag are cut straight from top to bottom, but in the brief bag they must be shaped to fit the frame, and give it a more comely appearance. The frame, as before described, is quite different. The way to commence with this bag is to open the frame as in Fig. 7, so that it will lie perfectly flat upon the bench. With the rule measure it carefully between the corners, A, A, and again at A, B. The distance between A and B being less when the frame is open than when closed, an additional 1/2 inch must be added to allow the gusset to bend freely round the hinge. Having correctly taken these measurements, get a sheet of brown paper and fold it in the middle; the reason for this is to allow of each side of the pattern taking the same curve at the swelled part. Cut the pattern for the sides first by ascertaining half the distance, A, A, and marking it on to the edge of the paper, measuring from the folded edge toward the ends. Next mark on the folded edge the depth you intend the bag to be, allowing in this, as in the carpet bag, 11/2 inches for covering the frame. The depths of brief bags vary so much that I will give these only as a guide, leaving my readers to add or reduce as their fancy guides them; but if they should strictly adhere to these given below, I am certain they will find them very useful sizes.

For a 12 inch frame cut the sides and gussets 101/2 inches in depth; when made up, these will be 9 inches from the frame to the bottom. For a 14 inch frame add 1 inch, and for a 16 inch add 2 inches. This will make these 10 inches and 11 inches in depth respectively when made up, and either of these will be found a very useful bag for many purposes. The width of the bottoms to be cut 5 inches, 51/2 inches, and 6 inches, the 5 inch, of course, for the 12 inch bag, the 51/2 inch for the 14 inch, and the 6 inch for the 16 inch. The depth having been decided upon, and marked on the folded edge of the paper, make another mark the same distance from the edge at the first mark, H. The bottom of the sides being 1 inch longer than the top, add 1/2 inch to the measurement of the top of pattern when the bottom part is marked off at J L. Draw a curved line between H L, as in Fig. 9, and cut through the two thicknesses of paper at one time, keeping them well together to insure them being alike. The gusset pattern may be cut in the same way, D to D, Fig. 10, being half the distance of A B, Fig. 7, and the 1/2 inch added for going round the joint; E E, the swelled part, which bends into the bag when the frame is closed, and also allows it to open perfectly square; F F is half the width of the bottom of gusset. A pattern for the bottom of the bag may be made by folding a piece of paper each way to get the length and width; make a small hole through the four thicknesses, open it and mark it from hole to hole, using the rule as a guide. This will be found to be perfectly accurate.

To cut out the bag, lay the leather on the bench, enameled side downward, and see that the patterns lie on it so the creases will run from the top to bottom of the bag when made. The sides must be taken first, and as they are more exposed than any other part, they should be taken from the best part of the hide. Take the gussets next, then the bottom. The welts are taken from the cuttings which are left. To make the handle, glue a lot of odd pieces together about 61/2 inches long, 1/2 inch wide, and the same thickness, and when dry pare the edges away until it is perfectly round and slightly tapering toward each end. It is then divided and glued top and bottom to a strip of good leather cut to shape, Fig. 12, which is passed through the rings at each end, and turned back to form a shape. Put a few stitches through close to the rings before the fittings are glued on, and cover with a piece of cow-hide long enough to go through the two rings and along the under side, then stitch it. Trim and dye the edges, rubbing them afterward with a piece of cloth to produce a polish. Before making the handle, the plates must be on the rings, or it will prove a difficult job to get them on afterward.

The stiffening for the bottom will be cut as if for a carpet bag. Fig. 11 represents the stiffening for the gussets, and is cut from a board half the thickness of that used for the bottom.

The linings may be cut from the outside patterns by reducing them the 11/2 inches, allowed for covering the frame, and 1/8 inch for each welt. A lining of scarlet or blue roan greatly adds to the appearance and durability of a bag. A skin large enough for a 14 inch or 16 inch will cost about 3s.

Cow-hide for the outside is sold at 1s. 8d. per square foot, but the leather sellers frequently have pieces large enough for making a bag which they will sell at a slight reduction, and which answers this purpose as well as cutting a hide. In seaming the bag, take care not to wrinkle it in the clams. The welts in this must reach only to the frame, the same as in the carpet bag; the rest of the seam must be neatly closed and rubbed down, so that it will not be lumpy on the frame. Before turning the bag warm it before the fire, especially if it is cold weather. Glue in the bottom stiffening first, and then the gussets, rubbing them well down with the bone. When these are set, prepare for the operation of framing. Fold one of the sides to get the middle of it, cut a hole for the lock barrel about 11/4 inches from the edge, and press it over. Be careful not to cut it too large or the hole will show. Pierce a hole through the leather for the lock plate, press this tightly on the frame, and clinch the clams underneath, to hold it securely. Make holes for the handle plates and fasten them on in a similar manner. Two slits must be cut near the middle of the other side of bag, about 3/4 inch from the edge, for the hasp to go through. This bag must be sewn to the frame all round, and care must be taken that a sufficient fullness is allowed in the middle of the gusset to enable it to close easily round the joints of the frame. A thumbpiece must be sewn on the bag at the hasp to open it by. The lining of this bag is sewn through the frame all round in the same manner as the side linings of the carpet bag.

I hope my readers will not think that I have gone too much into details. It is in small things that so many failures take place. As it is much easier to do anything when you are shown than when so much has to be guessed, it is my desire to make the road for beginners as smooth as possible, which must be my excuse if any is required. It is as well that those who intend to turn their attention to working in leather should begin by making a bag; the experience gained in cutting, fitting, putting together, and finishing will be useful when larger and more difficult pieces of work are undertaken.—Amateur Mechanics.

* * * * *



MOLASSES, HOW MADE.

The New England Grocer says that the manufacture of molasses is really the manufacture of sugar up to a certain stage, for molasses is the uncrystallized sirup produced in the making of sugar. The methods of manufacture in the West Indies vary very considerably. In the interior and on the smaller plantations it is made by a very primitive process, while on the larger plantations all the appliances of modern science and ingenuity are brought to bear. Each planter makes his own sugar. It is then carried to the sea coast and sold to the exporters, by whom it is shipped to this country. The quality and grade of the molasses varies with each plantation. Two plantations side by side may produce entirely different grades. This is owing to the soil, which in Porto Rico and other localities in the West Indies seems to change with almost every acre. The cane from which the sugar and molasses is made is planted by laying several pieces of it in holes or trenches. The pieces are then covered with earth to the depth of two or three inches. In about two weeks sprouts appear above the surface. Then more earth is put in, and as the sprouts grow, earth is added until in three or four months the holes are filled up. The planting is done from August to November, and the cutting progresses throughout the greater part of the year. The cane grows to a height of seven or eight feet, in joints each about a foot long.

When the cane is in proper condition for cutting, as shown by its appearance, an army of workmen take possession of the field. Each is armed with a long, broad knife, like a butcher's cleaver. They move down the lines of cane like an army, and while the cutting is going on the fields present an interesting sight, the sword-like knives flashing in the sun, the 300 or 400 laborers, the carpet of cut cane, the long line of moving carts, and the sea of standing cane, sometimes extending for miles and miles, stirred by the breeze into waves of undulating green. The laborers employed on these plantations are largely negroes and Chinese coolies. When the cane is ripe, they proceed to the field, each armed with a matchet. Spreading over the plantation, they commence the cutting of the cane, first by one cut at the top, which takes off the long leaves and that part which is worthless, except as fodder for the cattle. A second cut is then given as near the root as possible, as the nearer the ground the richer the cane is in juice. The cut cane is allowed to fall carelessly to the ground.

Other workmen come with carts, pick it up, tie it in bundles and carry it to the mill. The cutting of the cane is so adjusted as to keep pace with the action of the mill, so that both are always at work. Two gangs of men are frequently employed, and work goes on far into the night during the season, which lasts the greater part of the year.

As before stated, some of the methods of manufacture are very simple. In the simplest form, the sugar cane is crushed in a mortar. The juice thus extracted is boiled in common open pans. After boiling a certain length of time, it becomes a dark colored, soft, viscid mass. The uncrystallized sirup is expressed by putting the whole into cloth bags and subjecting them to pressure. This is molasses in a crude state. It is further purified by reboiling it with an addition of an alkaline solution and a quantity of milk. When this has continued until scum no longer arises, it is evaporated and then transferred to earthen jars. After it has been left for a few days to granulate, holes in the bottom of the jars are unstopped, and the molasses drains off into vessels placed to receive it. Another process of extracting molasses is as follows: By various processes of boiling and straining, the juice is brought to a state where it is a soft mass of crystals, embedded in a thick, but uncrystallized, fluid. The separation of this fluid is the next process, and is perfected in the curing house, so called. This is a large building, with a cellar which forms the molasses reservoir. Over this reservoir is an open framework of joists, upon which stands a number of empty potting casks. Each of these has eight or ten holes bored through the bottom, and in each hole is placed the stalk of a plantain leaf. The soft, concrete mass of sugar is removed from the cooling pans in which it has been brought from the boilers and placed in the casks. The molasses then gradually drains from the crystallized portion into the reservoir below, percolating through the spongy plantain stalks.

On the larger plantations, machinery of very elaborate description is used, and the most advanced processes known to science are employed in the manufacture. The principle is, however, the same as has been seen in the account of the simpler processes. On these larger plantations there are extensive buildings, quarters for workmen, steam engines, and all the necessary adjuncts of advanced manufacturing science. In the sugar mills the cut cane is carried in carts to the mill. It is then thrown by hand upon an endless flexible conductor which carries the cane between heavy crushers. The great jaws of the crushers press the cane into pulp, when it is thrown aside automatically to be carted away and used as a fertilizer. The juice runs off in the channels of the conductor into huge pans. The juice is now of a dull gray color and of a sweet, pleasant taste, and is known as guarapo. It must be clarified at once, for it is of so fermentable a nature that in the climate of Porto Rico it will run into fermentation inside of half an hour if the process of clarifying is not commenced. The pans into which the juice is conducted are pierced like a colander. The liquor runs through, leaving the refuse matter behind. It is then forced into tanks by a pump and run to the clarifiers, which are large kettles heated by steam. Lime is used to assist the clarification. It is then filtered into vats filled with bone black. The filtering is repeated until the juice changes color, when it is conveyed to the vacuum pans. It has now become a thick sirup. It is then pumped into the sirup clarifiers, skimmed, and again run through bone black, and finally is conducted into another kettle, where it is allowed to crystallize. The sirup that fails to crystallize is molasses, and it is here that we catch up with what we started after. To extract the molasses from the crystallized mass of sugar, we must go to the purging house. This is similar to the building spoken of in connection with the simpler process. It is of two stories. The upper floor is merely a series of strong frames with apertures for funnel-shaped cylinders. The sugar is brought into the purging house in great pans, which are placed over the funnels. The pans are pierced with holes through which the molasses drains off into troughs which are underneath the floor, all running to a main trough. From thence the molasses runs into vats, called bocoyes, each of which holds from 1,200 to 1,500 gallons. The hogsheads in which the molasses is brought to this country are manufactured principally in Philadelphia and taken to the West Indies. They are placed in the hold of the vessel and the molasses pumped into them. The government standard for molasses is 56 degrees polarization. When not above that test, the duty is four cents per gallon. Above it the duty is eight cents. This tends to keep molasses pure, as the addition of glucose increases the quantity of sugar and therefore of the polarization, and would make necessary the payment of increased duties. The adulteration of molasses is therefore largely if not wholly done after it is out of bond and in the hands of the jobber.

* * * * *



PRIMITIVE IRON MANUFACTURE.

We are indebted for the illustrations and the particulars to Dr. Percy's invaluable book on iron and steel (probably it is not saying too much to describe it as the best work on the subject ever written).



Fig. 1 shows a sectional elevation, and Fig. 2 shows a plan of furnace and bellows and tuyeres, indeed, an entire ironworks plant used in India, not only now, but, so far as we can gather, from time immemorial. The two figures give a sufficiently clear idea of the form of furnace used in Lower Bengal, in which portion of our Indian empire there are entire villages exclusively inhabited by iron smelters, who, sad to relate, are distinguished from the agricultural villages surrounding them by their filth, poverty, and generally degraded condition. There are whole tribes in India who have no other occupation than iron smelting. They, of course, sink no shafts and open no mines, and are not permanent in any place. They simply remain in one place so long as plentiful supplies of ore and wood are obtainable in the immediate vicinity. In many cases the villages formerly inhabited by them have passed out of existence, but the waste, or rather wasted products, of their operations remain.

The furnace shown in Figs. 1 and 2 is built of the sandy soil of the district, moistened and kneaded and generally strengthened by a sort of skeleton of strips of flexible wood. In form it varies from a cylinder, more or less circular, diverging into a tolerably acute cone, the walls being about 3 in. thick. The height is generally about 3 ft. and the mean internal diameter about 1 ft., but all these dimensions vary with different workmen and in different localities. There are two apertures at the base of the furnace; one in front, about 1 ft. in height, and rather less in width than the internal diameter of the furnace, through which, when the smelting of one charge is finished, the resulting mass of spongy iron is extracted, and which during the smelting is well plastered up, the small conical tuyere being inserted at the bottom. This tuyere is usually made of the same material as the furnace—namely, of a sandy soil; worked by hand into the required form and sun-dried; but sometimes no other tuyere is employed than a lump of moist clay with a hole in it, into which the bamboo pipes communicating with the bellows are inserted. The other aperture is smaller, and placed at one side of the furnace, and chiefly below the ground, forming a communication between the bottom of the furnace chamber and a small trench into which the slag flows and filters out through a small pile of charcoal. It is this slag being found in places where iron is not now made that shows that iron smelting was an occupation there, perhaps many centuries before.

Previous Part     1  2  3     Next Part
Home - Random Browse