p-books.com
Scientific American Supplement, No. 458, October 11, 1884
Author: Various
Previous Part     1  2  3     Next Part
Home - Random Browse

The London, Brighton, and South Coast Railway Company has in the last few years had its locomotive stock almost entirely replaced, and instead of seventy-two different varieties of engines out of a total of 233, which was the state of locomotive stock in 1871. a small number of well-considered types, suited to the different class of work required, are now in use. Mr. Stroudley considers—contrary to the opinion once almost universally held—that engines with a high center of gravity are the safest to traverse curves at high speed, as the centrifugal force throws the greatest weight on the outer wheels, and prevents their mounting; also that the greatest weight should be on the leading wheels, and that there is no objection to these wheels being of a much larger diameter than that usually adopted; in fact, by coupling the leading and driving wheels where the main weight is placed a lighter load is thrown on the trailing wheels, thus enabling them to traverse curves at a high speed with safety, while it permits of a larger fire-box being used; and these principles have been carried out in the newest class of engines, especially designed for working the heavy fast passenger traffic of the line.

The modern express engines are of two types. The first is a single engine with 6 ft. 6 in. driving wheels, and leading and trailing wheels 4 ft. 6 in. in diameter and a wheel base of 15 ft. 9 in. The frames are single, with inside bearings to all the wheels; the cylinders are inside, 17 in. diameter and 24 in. stroke. The boiler is 10 ft. 2 in. long and 4 ft. 3 in. diameter; the fire-box is of copper with a fire-grate area of 17.8 square feet, and the heating surface is in the tubes 1,080 square feet, fire-box 102 square feet; total, 1182 square feet. The weight in working order is about 35 tons. These engines have a tractive power of 89 lb. per pound of mean steam pressure in the cylinders, and their consumption of coal with trains averaging nine coaches is about 20 lb. per mile. The next type of engine designed has coupled wheels under the barrel of the boiler 6 ft. 6 in. diameter, with cylinders 171/4 in. diameter and 26 in. stroke, and were found so successful that Mr. Stroudley designed a more powerful engine of the same class, especially to take the heaviest fast trains in all weathers.

The 8:45 A.M. train from Brighton has grown to be one of the heaviest fast trains in the kingdom, although the distance it runs is but very short, while it is also exceptional in consisting entirely of first class coaches, and the passengers mainly season ticket holders; it often weighs in the gross 350 tons, and to take this weight at a mean speed of forty-five to fifty miles an hour over gradients of 1 in 264 is no light work.



The engines known as the "Gladstone" type have inside cylinders 181/4 in. diameter and 26 in. stroke, with coupled wheels 6 ft. 6 in. diameter under the barrel of the boiler; the trailing wheels are 4 ft. 6 in. diameter, and the total wheel base is 15 ft. 7 in. The frames are inside, of steel 1 in. thick, with inside bearings to all the axles. The cylinders are cast in one piece 2 ft. 1 in. apart, but in order to get them so close together the valves are placed below the cylinders, the leading axle coming between the piston and slide valve. The boiler is of iron, 10 ft. 2 in. long, and 4 ft. 6 in. diameter; and the heating surface is, in the tubes, 1,373 square feet; fire-box, 112 square feet; total, 1,485 square feet. The grate area is 20.65 square feet, and the tractive power per pound of mean cylinder pressure is 111 lb. The weight in full working order is—leading wheels, 13 tons 16 cwt.; driving wheels, 14 tons 10 cwt.; trailing wheels, 10 tons 8 cwt.; total, 38 tons 14 cwt. The tender weighs 27 tons.

To enable these engines to traverse curves easily a special arrangement of draw-bar is used, consisting of a T-piece with a wheel at each end working in a curved path in the back of the frame under the foot plate; on the back buffer beam a curved plate abuts against a rubbing piece on the tender, through which the draw-bar is passed and screwed up against an India-rubber washer, thus allowing the engine to move free of the tender as the curvature of the road road requires; the flanges on the driving wheel are also cut away, so as not to touch the rail. In order to reduce the wear of the leading flanges, a jet of steam from the exhaust is directed against the outer side of each wheel. The center line of the boiler is 7 ft. 5 in. above the rails, and the tubes, of which there are as many as 331, are bent upward 11/2 in., which permits expansion and contraction to take place without starting the tubes, and they are stated never to leak or give trouble. The feed-water is heated by a portion of the exhaust steam and the exhaust from the Westinghouse brake, and the boiler is consequently fed by pumps, is kept cleaner, and makes steam better. The reversing gear is automatic and exceedingly ingenious, the compressed air from the Westinghouse brake reservoir being employed to do the heavy work. A cylinder 41/2 in. diameter is fitted with a piston and rod attached to the nut of the reversing screw, and a three-way cock supplies the compressed air behind the piston; this forces the engine into back gear, and by allowing the air to escape, the weight of the valve motion puts the engine in forward gear. There are no balance weights, and the screw regulates the movement. There is also a very ingenious speed indicator, which consists of a small brass case filled with water, in which is a small fan driven by a cord from the driving wheel; a copper pipe leads from the fan case to a glass gauge tube; the faster the fan runs the higher the water will stand in the tube, thus indicating the speed.

The author has been led to describe this engine fully on account of the numerous ingenious appliances which have been adopted in its design. In a trial trip on October 3, 1883, from Brighton to London Bridge and back, with an average load of 191/2 coaches, or 285 tons gross, and with a speed of 45 miles per hour, the consumption of coal was 31 lb. per train mile, evaporating 8.45 lb. of water per pound of coal, and with as much as 1,100 indicated horse-power at one portion of the run. The finish and painting of these engines is well considered, but the large coupled wheels give a very high shouldered appearance, and as a type they are not nearly as handsome as the single engines previously described.

From the Brighton to the South-Western Railway is but a step; but here a totally different practice obtains to that adopted on most lines, all the passenger engines having outside cylinders, where they are more exposed to damage in case of accident, and, from being less protected, there is more condensation of steam, while the width between the cylinders tends to make an unsteady running engine at high speeds, unless the balancing is perfect; but the costly crank axle, with its risk of fracture, is avoided, and the center of gravity of the boiler may be consequently lowered, while larger cylinders may be employed. On the other hand, inside cylinders are well secured, protected, and kept hot in the smoke-box, thus minimizing the condensation of steam. The steam ports are short, and the engine runs steadier at high speeds, while with Joy's valve gear much larger cylinders can be got in than with the link motion. Thus modern improvements have minimized the advantages of the outside class.

The passenger engines for the fast traffic are of two types, the six-wheel engines with 7 ft. coupled wheels, and the new bogie engines which are being built to replace them. The former have 17 in. cylinders with 22 in. stroke, and a pair of coupled wheels 7 ft. in diameter, the leading wheels being 4 ft. diameter, and the wheel base 14 ft. 3 in. The grate area is 16.1 square feet, and the heating surface 1,141 square feet. The total weight in working order is 33 tons. The chief peculiarity of this type of engine consists in the boiler, which is fitted with a combustion chamber stocked with perforated bricks, the tubes being only 5 ft. 4 in. long. These engines are very expensive to build and maintain, owing to the complicated character of the boiler and fire-box, but as a coal burning engine there is no doubt the class was very efficient, but no more are being built, and a new type has been substituted. This is an outside cylinder bogie engine, with cylinders 181/2 in. diameter and 26 in. stroke; the driving and trailing coupled wheels are 6 ft. 6 in. diameter, and the bogie wheels 3 ft. 3 in. The wheel base to the center of the bogie pin is 18 ft. 6 in.; the heating surface is, in the tubes, 1,112; fire box, 104; total, 1,216 sq. ft. The weight of the engine in working order is 42 tons.



The Midland Railway route to the North is distinguished by the heavy nature of its gradients; between Settle and Carlisle, running through the Cumberland hills, attaining a height of 1,170 ft. above sea level, the highest point of any express route in the kingdom; and to work heavy fast traffic over such a line necessitates the employment of coupled engines. The standard express locomotive of this company has inside cylinders 18 in. in diameter and 26 in. stroke. The coupled wheels are 6 ft. 9 in. diameter, and the leading wheels 4 ft. 3 in., the total wheel base being 16 ft. 6 in., and the tractive force 104 lb. for each lb. of mean cylinder pressure. The boiler is of best Yorkshire iron, 10 ft. 4 in. long and 4 ft. 1 in. diameter. The grate area is 17.5 square feet, and the heating surface is, in the tubes, 1,096; fire-box, 110; total, 1,206. There are double frames to give outside bearings to the leading axle, as in the Great Western engine, and the engine is fitted with a steam brake. The weight in full working order is—leading wheels, 12 tons 2 cwt.; driving wheels, 15 tons; trailing wheels, 11 tons 6 cwt.; total, 38 tons 8 cwt. The tender weighs 26 tons 2 cwt., and holds 3,300 gallons of water and 5 tons of coal. Latterly a fine type of bogie express engine has been introduced, with inside cylinders 18 in. diameter and 26 in. stroke, and four coupled driving wheels 7 ft. diameter. The total wheel base to the center of the bogie pin is 18 ft. 6 in. The grate area is 17.5 square feet, and the heating surface is, in tubes, 1,203 square feet, and fire-box, 110; total, 1,313; and the engine weighs 42 tons in working order. These engines take fourteen coaches, or a gross load of 222 tons, at 50 miles an hour over gradients of 1 in 120 to 1 in 130, with a consumption of 28 lb. of coal per mile. The London, Chatham, and Dover Company has also some fine engines of a similar type. They have inside cylinders 171/2 in. diameter and 26 in. stroke; the coupled wheels are 6 ft. 6 in. diameter, and the bogie wheels 3 ft. 6 in., the wheel base to the center of the bogie pin being 18 ft. 2 in. The boiler is 10 ft. 2 in. long and 4 ft. 2 in. diameter, the grate area is 16.3 square feet, and the heating surface is, in the tubes, 962 square feet; fire-box, 107 square feet; total, 1,069. The boiler pressure is 140 lb., and the tractive force per lb. of steam in the cylinder 102 lb. The weight in full working order is, on the bogie wheels, 15 tons 10 cwt.; driving wheels, 13 tons 10 cwt.; trailing wheels, 13 tons; total, 42 tons.

Mr. Worsdell has lately designed for the Great Eastern Railway a fine type of coupled express engine, which deserves mention. It has inside cylinders 18 in. diameter and 24 in. stroke, with coupled wheels 7 ft. diameter and leading wheels 4 ft. diameter, the latter being fitted with a radial axle on a somewhat similar plan to that previously described as adopted by Mr. Webb for the new North-Western engines; the frames are single, with inside bearings to all the wheels, and Joy's valve gear is used. The boiler pressure is 140 lb., and the tractive power per lb. of mean cylinder pressure 92 lb. The total wheel base is 17 ft. 6 in. The boiler, which is fed by two injectors, is of steel, 11 ft. 5 in. long and 4 ft. 2 in. diameter. The grate area is 17.3 square feet, and the heating surface is, in the tubes, 1,083; fire-box, 117; total, 1,200 sq. ft. The weight in working order is, on the leading wheels, 12 tons 19 cwt.; driving wheels, 15 tons; trailing wheels, 13 tons 4 cwt.; total, 41 tons 3 cwt. These engines burn 27 lb. of coal per train mile with trains averaging thirteen coaches. It has been seen that the Cheshire lines express between Liverpool and Manchester is one of the fastest in England, and the Manchester, Sheffield, and Lincolnshire Railway Company, who works the trains, has just introduced a new class of engine specially for this and other express trains on the line. The cylinders are outside, 171/2 in. diameter and 26 in. stroke, with single driving wheels 7 ft. 5 in. diameter, the leading and trailing wheels being 3 ft. 8 in. diameter. The total wheel base is 15 ft. 9 in., and the frames are double, giving outside bearings to the leading and trailing axles, and inside bearings to the driving axle. The boiler is 11 ft. 6 in. long and 3 ft. 11 in. diameter, and the grate area is 17 square feet. The heating surface is in the tubes 1,057 square feet; fire-box, 87 square feet; total, 1,144 square feet. The tractive force per pound of mean cylinder pressure is 88.4 lb. The weight in full working order is, on the leading wheels, 11 tons 3 cwt.; driving wheels, 17 tons 11 cwt.; trailing wheels, 11 tons 18 cwt.; total, 40 tons 12 cwt. This engine is remarkable for the great weight thrown on the driving wheels, and its cylinder power is great in proportion to its adhesion, thus allowing the steam to be worked at a high rate of expansion, which is most favorable to the economical consumption of fuel. There are numerous fine engines running on other lines, such as the new bogie locomotives on the North-Eastern and Lancashire and Yorkshire railways, and the coupled express engines on the Caledonian; but those already described represent fairly the lending features of modern practice, and the author will now notice briefly the two other classes of engines—tank passenger engines for suburban and local traffic and goods engines. The Brighton tank passenger engine is a good example of the former class; it has inside cylinders 17 in. diameter and 24 in. stroke. The two coupled wheels under the barrel of the boiler are 5 ft. 6 in. diameter, and the trailing wheels 4 ft. 6 in.; there are single frames with inside bearings to all the axles. The boiler pressure is 140 lb., and the tractive force per pound of mean cylinder pressure 106 lb.; the total wheel base is 14 ft. 6 in. The boiler is 10 ft. 2 in. long and 4 ft. 4 in. diameter, and the heating surface is in the tubes, 858 square feet; fire-box, 90 square feet; total, 948 square feet. The engine is furnished with wing tanks holding 860 gallons of water, and carries 30 cwt. of coal. The weight in working order is 38 tons. These engines have taken a maximum load of twenty-five coaches between London and Brighton, but are mainly employed in working the suburban and branch line traffic; their average consumption of coal is 23.5 lb. per mile, with trains averaging about ten coaches.

Another example is Mr. Webb's tank engine on the North-Western Railway, which presents a contrast to the foregoing. It has inside cylinders 17 in. diameter and 20 in. stroke, coupled wheels 4 ft. 6 in. diameter, and a tractive power per lb. of mean cylinder pressure of 107 lb.; the wheel base is 14 ft. 6 in. with a radial box to the leading axle; the heating surface is in the tubes, 887; fire-box, 84; total, 971 square feet; the weight in working order is 35 tons 15 cwt. The engine is fitted with Webb's hydraulic brake, and steel, manufactured at Crewe, is largely used in its construction. The consumption of coal-working fast passenger trains has been 281/2 lb. per mile. There are many other types, such as the ten wheel bogie tank engines of the London, Tilbury, and Southend and South-Western railways; the saddle tank bogie engines, working the broad gauge trains on the Great Western Railway, west of Newton; and the familiar class working the Metropolitan and North London traffic. But the same principle is adopted in nearly all—a flexible wheel base to enable them to traverse sharp curves, small driving wheels coupled for adhesion, and wing or saddle tanks to take the water. One notable exception is, however, the little six wheel all-coupled engines weighing only 24 tons, which work the South London traffic, burning 241/4 lb. of coal per mile, with an average load of eleven coaches.

Goods engines on all lines do not vary much. As a rule they are six wheel all-coupled engines, with generally 5 ft. wheels, and cylinders varying between 17 in. and 18 in. diameter and 24 in. to 26 in. stroke; the grate area is about 17 square feet, and the total heating surface from 1,000 to 1,200 sq. ft.; the average weight in full working order varies from 30 to 38 tons. One noteworthy exception occurs, however, on the Great Eastern Railway, where a type of goods engine with a pony truck in front has been introduced. The cylinders are outside 19 in. diameter and 26 in. stroke, there are six coupled wheels 4 ft. 10 in. diameter, and the pony truck wheels are 2 ft. 10 in. diameter; the total wheel wheel base is 23 ft. 2 in., but there are no flanges on the driving wheels. The boiler is 11 ft. 5 in. long and 4 ft. 5 in. diameter, the boiler pressure is 140 lb., and the tractive force per lb. of mean cylinder pressure 162 lb.; the grate area is 18.3 square feet, and the heating surface is in the tubes, 1,334 square feet; fire-box, 122 square feet; total, 1,456 square feet.

The weight in working order is on the pony truck, 8 tons 10 cwt.; leading coupled, 12 tons 8 cwt.; driving coupled, 13 tons 5 cwt.; trailing coupled, 12 tons 15 cwt.; total, 47 tons.

The tender weighs 28 tons in full working order. These engines take 40 loaded coal trucks or sixty empty ones, and burn 52 lb. of coal per train mile, the worst gradient being 1 in 176. A notice of goods engines would not be complete without alluding to a steep gradient locomotive, and a good example is the engine which works the Redheugh Bank on the North-Eastern Railway. This incline is 1,040 yards long, and rises for 570 yards 1 in 33, then for 260 yards 1 in 21.7, for 200 yards 1 in 25, and finally for 110 yards 1 in 27. The engine, which is an all-coupled six wheel tank engine, weighs 481/2 tons in working order, it has cylinders 18 in. diameter and 24 in. stroke, and 4 ft. wheels, the boiler pressure is 160 lb., and the tractive force per lb. of mean steam pressure in the cylinders is 162 lb. This engine will take up the incline twenty-six coal wagons, or a gross load of 218 tons, which is a very good duty indeed.

Having now passed in review the general types of engines adopted in modern English practice, the author would briefly draw attention to some points of design and some improvements effected in late years. And first, as to the question of single or coupled engines, there is a great diversity of opinion. Mr. Stirling conducts his traffic at a higher rate of speed, and certainly with equal punctuality, with his magnificent single 8 ft. engines, as Mr. Webb on the North-Western with coupled engines, and the economy of fuel of the former class over the latter is very remarkable; this is, no doubt, owing, as has been previously pointed out, to their ample cylinder power, which permits of the steam being worked at a high rate of expansion. There is no doubt that if single engines can take the load they will do so more freely and at a less cost than coupled engines, burning on the average 2 lb. of coal per mile less with similar trains. With, regard to loads, it is a question whether any express train should be made up with more than twenty-five coaches. The Great Northern engine will take twenty-six and keep time, and the Brighton single engine has taken the five P.M. express from London Bridge to Brighton, consisting of twenty-two coaches, at a speed of forty-five miles per hour. Of course where heavy gradients have to be surmounted, such as those on the Midland route to Scotland, coupled engines are a necessity. Single engines are said to slip more than coupled; thus an 8 ft. single Great Northern engine running down the incline from Potter's Bar to Wood Green with twelve coaches at the rate of sixty miles an hour was found to be making 242 revolutions per mile instead of 210; and in an experiment tried on the Midland Railway it was found that a coupled engine with ten coaches at fifty miles an hour made seventeen extra revolutions a mile, but when the side rods were removed it made forty-three. The Great Western, Great Northern, and Brighton mainly employ single engines for their fast traffic; and the Manchester, Sheffield, and Lincolnshire have now adopted the single type in preference to the coupled for their express trains; while the North-Western, Midland, South-Western, and Chatham adopted the coupled type. One noticeable feature in modern practice is the increased height of the center line of boiler; formerly it was the great aim to keep this low, and numerous schemes to this effect were propounded, but now it has become generally recognized that a high pitched engine will travel as steadily and more safely round a curve—given a good road—than a low pitched one; and thus while in 1850 the average height of the center line of boilers varied between 5 ft. 3 in. and 6 ft. 3 in., now in the latest designs it lies between 7 ft. and 7 ft. 6 in. Single frames are very generally adopted, but double frames and outside bearings to the leading and trailing wheels, as in the Great Western engines, give great steadiness in running, and this class has also double bearings to the driving wheels, thus entailing greater security in case of the facture of a crank axle. The general adoption of cabs on the foot-plate for the men is another improvement of late introduction, although at first not universally appreciated by those for whose comfort it was designed—"I felt as if I was in my coffin," said an old driver when asked how he liked the new shelter. Mild steel fire-boxes, which have been employed in America, are not in favor here, copper being universally used; they have been tried on the Caledonian, Great Southern and Western, North London, and North-Western, and were found not to succeed. Brake blocks of cast iron have now generally superseded wood; steel is being more and more used, especially on the North Western. There is less use of brasswork for domes and fittings, although it is claimed for brass that it looks brighter and can easily be kept clean. There is greater simplicity of design generally, and the universal substitution of coal as coke for fuel, with its consequent economy; and last, but not least, the adoption of standard types of engines, are among the changes which have taken place in locomotive practice during the past quarter of a century.



Having now reviewed, as far as the limits of this paper will allow, the locomotive practice of the present day, the author would in conclusion draw attention to what may possibly be one course of locomotive development in the future. Time is money, and it may be in the coming years that a demand will arise for faster means of transit than that which we possess at present. How can we meet it? With our railways laid out with the curves and gradients existing, and with our national gauge, and our present type of locomotive, no great advance in speed is very probable; the mean speed of express trains is about fifty miles an hour, and to take an average train of 200 tons weight at this speed over a level line requires between 650 and 700 effective horse-power, within the compass of the best engines of the present day. But if instead of fifty miles an hour seventy is required, an entirely different state of things obtains. Taking a train of 100 tons, with engine and tender weighing 75 tons, or 175 tons gross, the first question to determine will be the train resistance, and with reference to this we much want careful experiments on the subject, like those which Sir Daniel Gooch made in 1848, on the Bristol and Exeter Railway, which are even now the standard authority; the general use of oil axle-boxes and long bogie coaches, irrespective of other improvements, would render this course desirable. With regard to the former, they appear to run with less friction, but are heavier to start, oil boxes in some experiments made on the South-Western Railway giving a resistance of 2.5 lb. per ton, while grease boxes ranged from 6 lb. to 9 lb. per ton. Again, the long and heavy bogie Pullman and other coaches have the reputation among drivers, rightly or wrongly, of being hard to pull. The resistance of an express train on the Great Western Railway at seventy-five miles an hour was 42 lb. per ton, and taking 40 lb. per ton for seventy miles an hour would give a total resistance on the level of 7,000 lb., corresponding to 1,400 horse-power—about double the average duty of an express engine of the present day. The weight on the driving wheels required would be 183/4 tons, allowing one-sixth for adhesion, about the same as that on the driving axle of the Bristol and Exeter old bogie engines. Allowing 21/2 lb. of coal per horse-power per hour would give a total combustion of 3,500 lb. per hour and to burn this even at the maximum economic rate of 85 lb. per square foot of grate per hour would require a grate area of 41 square feet, and about 2,800 square feet of heating surface. Unless a most exceptional construction combined with small wheels is adopted, it appears almost impossible to get this amount on the ordinary gauge. It is true the Wootten locomotives on the Philadelphia and Reading Railway have fire-boxes with a grate area of as much as 76 square feet, but these boxes extend clean over the wheels, and the heating surface in the tubes is only 982 square feet; but although these engines run at a speed of forty-two miles an hour, they are hardly the type to be adopted for such a service as is being considered. On the broad gauge, however, such an engine could easily be designed on the lines now recognized as being essential for express engines without introducing any exceptional construction, and there appears but little doubt that were Brunei's magnificent gauge the national one, competition would have introduced a higher rate of speed between London and our great towns than that which obtains at present.

The whole question of the future introduction of trunk lines, exclusively for fast passenger traffic, is fraught with the highest interest, but it would be foreign to the subject matter of this paper to enter more fully on it, the author merely desiring to state his opinion that if the future trade and wealth of our country require their construction, and if a very high rate of speed much above our present is to be attained, their gauge will have to be seriously considered and settled, not by the reasons which caused the adoption of the present gauge, but by the power required to carry on the traffic—in fact, to adapt the rail to the engine, and not, as at present, the engine to the rail. High speed requires great power, and great power can only be obtained by ample fire-grate area, which for a steady running engine means a broad gauge. The Gauge Commissioners of 1846 in their report esteemed the importance of the highest speed on express trains for the accommodation of a comparatively small number of persons, however desirable that may be to them, as of far less moment than affording increased convenience to the general commercial traffic of the country. The commercial traffic of England has grown and prospered under our present system, and if its ever increasing importance demands high speed passenger lines, we may rest assured that the ingenuity of man, to which it is impossible to assign limits, will satisfactorily solve the problem.

* * * * *



SCREW STEAM COLLIER FROSTBURG.



Our diagram shows the screw steam collier Frostburg, built by Henry H. Gorringe (the American Shipbuilding Co.), Philadelphia, Pa. Length, 210 ft. Beam, 33 ft. Depth, 17 ft, Register tonnage, 533. Carrying capacity on 14ft., 1,100 tons, and 100 tons coal in bunker. Cubical contents of cargo space, 55,168 cub. ft. Carrying capacity on 16 feet draught, 1,440 tons. Engines, compound surface condensing. High pressure 26 in. diameter, low pressure 48 in. diameter, stroke 36 in. Two boilers, each 13 ft. diameter. 10 ft. long, and one auxiliary 5 ft. diameter and 10 ft. high. 100 lb. working pressure. Sea speed with full cargo, 11 knots.

* * * * *

A thirteen year old girl, who is perfect in other ways, but who has simply little blue spots that puff out slightly where her eyes should be, is said to be living at Amherst, Portage County, Wisconsin.

* * * * *



DESTRUCTION OF THE TARDES VIADUCT.

The railroad from Montlucon to Eygurande, which is being constructed by the state engineers, crosses the valley of the Tardes in the environs of Evaux (Creuse).

At the spot selected for the establishment of the viaduct the gauge is deep and steep. The line passes at 300 feet above the river, and the total length of the metallic superstructure had to be 822 feet. To support this there was built upon the right bank a pier 158 feet in height, and, upon the left, another one of 196 feet. The superstructure had been completed, and a portion of it had already been swung into position, when a violent, gale occurred and blew it to the bottom of the gorge. At the time of the accident the superstructure projected 174 feet beyond the pier on the right bank, and had to advance but 121 feet to reach the 33 foot scaffolding that had been established upon the other pier.

It blows often and violently in this region. For example, a gale on the 20th of February, 1879, caused great damage, and, among other things, blew the rear cars of a hay train from the top of the Louvoux viaduct to the Bouble.

The superstructure of the Tardes viaduct had already withstood the tempest of the 23d and the 24th of January, 1884, and neither any alteration in its direction nor any change in the parts that held it upon the pile could be perceived. But on the night of January 26-27 the storm doubled in violence, and the work was precipitated into the ravine. No one was witness of the fall, and the noise was perceived only by the occupants of the mill located below the viaduct.

The workmen of the enterprise, who lived about 325 feet above this mill and about 650 feet from the south abutment, heard nothing of it, the wind having carried the noise in an opposite direction. It was not until morning that they learned of the destruction of their work and the extent of the disaster.

One hundred and sixty-nine feet of the superstructure, weighing 450 tons, had been precipitated from a height of nearly 200 feet and been broken up on the rock at 45 feet from the axis of the pier. The breakage had occurred upon the abutment, and the part 195 feet in length that remained in position in the cutting was strongly wedged between walls of rock, which had kept this portion in place and prevented its following the other into the ravine.

Upon the pier there remained a few broken pieces and a portion of the apparatus used in swinging the superstructure into place.

Below, in the debris of the superstructure, the up-stream girder lay upon the down-stream one. The annexed engraving shows the state of things after the disaster.

Several opinions have been expressed in regard to the cause of the fall. According to one of these, the superstructure was suddenly wrenched from its bearings upon the pier, and was horizontally displaced by an impulse such that, when it touched the masonry, its up-stream girder struck the center of the pier, upon which it divided, while the down-stream one was already in space. The fall would have afterward continued without the superstructure meeting the face of the pier.



Upon taking as a basis the horizontal displacement of the superstructure, which was 45 meters to the right of the pier, and upon combining the horizontal stress that produced it with that of the loads, the stress exerted upon the body may he deduced. But this hypothesis seems to us scarcely tenable, especially by reason of the great stress that it would have taken to lift the superstructure. On another hand, it was possible for the latter to slide over one edge of the pier, and this explains the horizontal distance of 45 feet by which its center of gravity was displaced. It is probable, moreover, that the superstructure, before going over, moved laterally upon its temporary supports.

The girders were, in fact, resting upon rollers, and the roller apparatus themselves were renting upon wedges, and there was no anchorage to prevent a transverse sliding.

Under the prolonged thrust of a very high wind, the superstructure, by reason of its considerable projection, must have begun to swing like a pendulum. These oscillations acquired sufficient amplitude to cause the superstructure to gradually move upon its rollers until the latter no longer bore beneath the webs. The flanges therefore finally bent upward where they rested upon the rollers, through the action of the weight which they had to support, and the entire superstructure slid off into space.

An examination of the bent pieces seems to give great value to this hypothesis.—Le Genie Civil.

* * * * *



JOY'S REVERSING AND EXPANSION VALVE GEAR.

[Footnote: A paper read before the Mechanical Section of the British Association, at Montreal, August, 1884.]

Four years ago, in August, 1880, a paper was read on this subject before the Annual Summer Meeting of the Mechanical Engineers' Society of Great Britain, then held in Barrow-in-Furness, describing this valve motion and its functions, which was then comparatively new. It was, however, illustrated by its application to a large express goods (freight) engine, built by the London and North-Western Railway Company (England) specially to test the advantages and the endurance of the gear. This engine had cylinders of 18 inches in diameter and 24 inch stroke, and six wheels coupled 5 feet 1 inch diameter, and was designed by Mr. Webb, the Company's chief engineer, for their heavy fast goods traffic on the main line. The engine has been running this class of traffic ever since. In January, 1884, it was passed through the repair shops for a general overhauling, when it was found that the valve motion was in such good condition as to be put back on the engine without any repairs.

The main object of this present paper is to deal with the advantages of the valve gear and its application to various classes of engines both on land and at sea, and with the results of such applications, rather than treating it as a novelty, to give an exhaustive description of its construction and functions, which was done in the paper above referred to. A very short description of its action and main features will, however, be necessary to the completeness of the paper, and as a basis from which the improved results to be recorded should necessarily be shown to spring.

The essential feature of this valve gear is that movement for the valve is produced by a combination of two motions at right angles to each other; and by the various proportions in which these are combined, and by the positions in which the moving parts are set with regard to each other, it gives both the reversal of motion and the various degrees of expansion required. Eccentrics are entirely dispensed with and the time-honored link gear abandoned, the motion is taken direct from the connecting rod, and by utilizing independently the backward and forward action of the rod, due to the reciprocation of the piston, and combining this with the vibrating action of the rod, a movement results which is suitable to work the valves of engines, allowing the use of any proportions of lap and lead desired, and giving an almost mathematically correct "cut-off" for both sides of the piston and for all points of expansion intermediately, as well as a much quicker action at the points of "cut-off" and "release" than is given by a link gear.

The machinery for accomplishing this is both less costly and less complicated than the ordinary link motion, and is shown in elevation on cut, which is a view of the complete motion as on the first London and North-Western locomotive. Here E is the main valve lever, pinned at D to a link, B, one end of which is fastened to the connecting rod at A, and the other end maintained in about the vertical by the radius rod, C, which is fixed at the point, C. The center or fulcrum, F, of the lever, E, partaking of the vibrating movement of the connecting rod at the point, A, is carried in a curved slide, J, the radius of which is equal to the length of the link, G, and the center of which is fixed to be concentric with the fulcrum, F, of the lever when the piston is at either extreme end of its stroke. From the upper end of the lever, E, the motion is carried direct to the valve by the rod, G. It will be evident thus that by one revolution of the crank the lower end of the lever, E, will have imparted to it two different movements, one along the longer axis of the ellipse, traveled by the point, A, and one through its minor axis up and down, these movements differing as to time, and corresponding with the part of the movement of the valve required for lap and lead, and that part constituting the port opening for admission of steam.



The former of these is constant and unalterable, the latter is controllable by the angle at which the curved slide, J, may be set with the vertical.

It will further be evident that if the lever, E, were pinned direct to the connecting rod at the point, A, which passes through a practically true ellipse, it would vibrate its fulcrum, F, unequally on either side of the center of the curved slide, J, by the amount of the versed sine of the arc of the lever, E, from F D; it is to correct this error that the lever, E, is pinned at the point, D, to a parallel motion formed by the parts, B and C. The point, D, performing a figure which is equal to an ellipse, with the error to be eliminated added, so neutralizing its effect on the motion of the fulcrum, F.

The "lap" and "lead" are opened by the action of the valve lever acting as a lever, and the port opening is given by the incline of the curved slide in which the center of that lever slides, and the amount of this opening depends upon the angle given to that incline. When these two actions are in unison, the motion of the valve is very rapid, and this occurs when the steam is being admitted. Then follows a period of opposition of these motions, during which time the valve pauses momentarily, this corresponding to the time when the port is fully open. Further periods of unison follow, at which time the sharp "cut-off" is obtained.

The "compression" resulting with this gear is also reduced to a minimum, owing to the peculiar movement given to the valves (i. e., the series of accelerations and retardations referred to), as, while the "lead" is obtained later and quicker, the port is also shut for "compression" later and quicker, doing away with the necessity for a special expansion valve, with its complicated and expensive machinery, and allowing the main valve to be used for expansion, as the "compression" is not of an injurious amount, even with a "cut-off" reduced to 15 per cent., or about 1/6 of the stroke.

Thus, so far as the distribution of the steam and its treatment in the cylinder is concerned, a marked advantage is shown in favor of this valve gear. But next in its favor, as before said, is that the above advantages are not gained at the cost of added complication of parts or increased cost of machinery, but the reverse, as this gear can be built at a less cost than link gear, varying according to the circumstances, but reaching as high as a saving of 25 per cent., or, if it be compared with a link gear supplemented by the usual special expansion valve and gear as employed on marine engines, then the total saving is fully 50 per cent., and an equally good result is obtained as to the distribution and subsequent treatment of the steam.

After accuracy of result and reduction in cost may rank saving room and the advantages arising therefrom (though for steamships perhaps this should have come first). Taking locomotives of the inside cylinder type, which is the general form in use in England and the continent of Europe, by clearing away the eccentrics and valves from the middle of the engine, much larger cylinders may be introduced and a higher rate of expansion employed, and this is being done. Also room is left for increasing the length and wearing surfaces of all the main bearings with even less crowding than is now the case with engines with the smaller cylinders.

But this advantage of saving room comes much more prominently forward in marine engines, especially in war ships, where every inch of room saved is valuable; and in the new type of triple-cylinder engines now coming so much into vogue in the mercantile marine, whether those engines be only the ordinary three-cylinder engines with double expansion, or the newer, triple expansion engine, expanding the steam consecutively through three cylinders—the form of marine engine which promises to come into use wherever high-class work and economy are required. On this system, by placing all the valve chests in front of the cylinders instead of between them, or in a line with them, sufficient room is saved to get the new-type three-cylinder engine into the space occupied by the old form of two-cylinder engine.

Besides these prominent advantages there are others which, though of minor importance, are still necessary to the practical and permanent success of any new mechanical arrangement, such as the accessibility of all the working parts while in motion, for examination and oiling; the ease with which any part or the whole can be stripped and cleaned, or pinned up out of the way in case of break down or accident, or got at and dismantled for ordinary repair; the ease with which the whole may be handled, started, reversed, or set at any point of expansion—all these being recommendations to enlist the care and attention of the engineers in charge by lightening their duties and rendering the engines easy to work.

With those advantages it is perhaps not surprising that this valve gear has been very considerably adopted for many classes of steam engines, especially where a high result has been required, with economy of space, and a minimum of complication.

Having crucially tested the original engine on the London and North-Western Railway, Mr. Webb proceeded to build others similar, and on his bringing out his Compound Express Engine—notably the most advanced step in locomotive design of the present day—he adopted this valve gear throughout. There are now a number of these engines running some of the fastest trains on the London and North-Western Railway, with the most satisfactory results.

Following these, others of the leading railways took up the system, and prominently among these Mr. Worsdell, of the Great Eastern Railway, built a number of large express engines for his fast and heavy traffic, and is now building a number of others similar as to the valve gear for his suburban traffic, which is specially heavy. Also the Lancashire and Yorkshire and the Midland and others of the chief railways are employing the system specially for large express engines; the Midland engines having cylinders of 19 inches diameter by 26 inches stroke, and four coupled wheels of 7 feet diameter. A number of the above-named engines have run large mileages, in many cases already exceeding 100,000 miles per engine. For other countries also a number of locomotive engines have been built or contracted for—both of inside and outside cylinder types—making a total of nearly 800 locomotives built and building, many of them being of special design and large size, up to 20 inches and 21 inches diameter of cylinder.

In all these the absence of wire-drawing may be specially noted by the full line at the top of the diagram, showing the admission of steam—this fullness arising from the rapid and full opening of the port for admission.

Passing now to the other great type of engines, those covered under the general designation of marine engines, this gear has been applied to nearly 40,000 H.P. indicated, built and building, and to all classes and sizes, from the launch engine with cylinders 8 inches by 9 inches, running at 600 to 700 revolutions per minute, up to engines for the largest class of war ships, such as her Britannic Majesty's steel cruiser Amphion, of 5,000 H.P., with cylinders in duplicate of 46 inches and 86 inches diameter, and 3 feet 3 inches stroke, running 100 revolutions per minute. An examination of the indicator diagrams taken from these engines shows that no wire-drawing takes place, and that, though the expansion is carried to a point beyond the ordinary requirements, the compression is but slightly increased. In all the diagrams taken from this valve motion there is seen the clear, full upper line showing an abundant admission of steam without any wire-drawing, and also the distinctly marked points where "cut-off" or "suppression" and where "release" takes place, showing the rapid action of the valves at those points.

It is well known to engineers that to obtain the maximum advantage out of compounding, it is necessary to cut off in the low pressure cylinder at a point corresponding to the relation between the low and the high, and that point should be unaltered, whereas the point of cut-off in the high may at the same time be varied to suit the work to be done.

In an ordinary link motion engine (where both links are connected to the same weigh shaft), when linking up the high pressure cylinder to cut-off short, the same change is necessarily made in the low. By the use of the Joy gear, cut-off valves may be fitted to both cylinders, that for the low pressure being fixed at the constant position required by the proportion of the cylinders, while that on the high is adjustable; of course, in this case, the position of the quadrants must be only changed for reversing. In arranging the independent cut-off on the Joy gear, it is only necessary to increase the length of the vibrating link beyond the point of attachment for the main valve spindle connection to obtain a point from which motion may be taken to actuate the cut-off valve; even then the cost of the Joy gear for both cylinders is but little more than for a single set of link gear.

This arrangement gives an absolutely perfect distribution of steam for compounding, also equalizes the power developed by both cylinders, and is far more simple and inexpensive than any other gear in existence.

* * * * *



THE STEAM BELL.



The secondary railways in rural districts in Austria having no gates or bars at the level crossings, or guards at such points, but being open like tramways, special precautions are required to avoid accidents, and the public has to be warned of the approach of the train from a sufficient distance. This is done by ringing bells preferably to sounding whistles, as these are more likely to startle horses. The steam bell shown by our illustrations has been adopted for this purpose on the Austrian lines, and is a simple contrivance. It consists of a cylindrical chamber, a, ending in a narrower tube, c, which forms the seating for a flap valve, d, to which the hammer or clapper, e, is fixed. Steam is admitted through a small pipe, b, at the bottom, and after a certain interval attains sufficient pressure to lift the valve. The opening being large compared with the pipe, b, steam escapes more rapidly than it arrives through the small orifice; the pressure falls, and the valve drops down and causes the hammer to strike a bell surrounding the cylinder. The valve is provided with an internal collar as shown, so that it has to rise for the width of this before the steam is let out, and thus determines the swing of the clapper and the force of the blow. To intensify the latter and multiply the number of blows, the clapper spring is prolonged over the fulcrum and bent back so as to form a spring, which is tightened by the lifting of the flap, and sends the clapper down on the bell with increased force. The hinge of the flap does not require any lubrication besides what it gets through the steam. The bell is fixed upon the roof of the driver's cab, so that the steam does not interfere with his lookout, and fastened by three bolts or screws. The diameter of the steam-pipe is from 1/4 to 1/2 inch according to the size of the bell, and the distance of the clapper from the bell is a little less than the diameter of the corresponding cock. The steam cock is perforated as shown by the illustration to drain the pipe when shut, and a small hole, b, in the bell cylinder drains the latter. The steam-pipe is made with a bend as usual, to allow for contraction and expansion. The number of blows given varies according to the steam pressure, and the opening of the steam cock; it is

With 90 lb. pressure, and cock 1/2 open, 170 blows per min. " " " " 1/3 " 136 " 105 " " " 1/2 " 240 " " " " " 1/3 " 156 " " " " " 1/5 " 136 " 120 " " " 1/3 " 228 " 135 " " " 1/5 " 200 "

To start the bell, the cock is opened full, and afterward partly closed. The blows follow in such rapid succession that a kind of uniform sound with louder intervals is produced, but not of the same shrill character as by a steam whistle. The same kind of bell is used on the shunting engines in goods yards, where roadways have to be crossed on which lurries and handtrucks circulate, and the results as far as prevention of accidents is concerned are stated to be very satisfactory.

* * * * *



LIEUT. GREELY BEFORE THE BRITISH ASSOCIATION.

Lieuts. Greely and Ray were received with distinguished honors at the meeting of the British Association in Montreal. A complimentary luncheon was tendered him by the members of the British Association for the Advancement of Science, at the Windsor Hotel. General Sir Henry Lefroy presided. In response to the toast "Our Distinguished Guests," coupling the names of Lieuts. Greely and Ray and Mrs. Greely, Lieut. Greely said:

"Mr. President, Ladies and Gentlemen: I need scarcely say that this flattering reception from representative men of one of England's most distinguished societies touches deeply my feelings as a soldier and as a man. It is not alone that you represent the science and learning of England and the world, but that you are all countrymen of those daring seamen and explorers whose names and whose deeds have become household words throughout the world. Hudson, Baffin, Cook, Nelson, Parry, Franklin, and a score of others among the dead; McClintock, Nares, and Markham, and last, but not least, the man whose name was oftenest on our lips when praying for relief during the past terrible winter—Bedford Pim. What those men have done the whole world knows. That you should deem aught that I have done worthy to placed with the deeds of those illustrious men must always be a source of pride to me. For three centuries England maintained against the world the honors of the farthest north. Step by step every advance was made by Englishmen. Now England's grandest colony presses to the front; but none the less is the honor England's, for at the price of her sons' lives and by their toil the path was cleared. But for Beaumont's dauntless pluck and indomitable energy in 1876, Lockwood would never had made his great northing in 1882. I have during a quarter of a century's service, as becomes a soldier, been jealous of my honor. I have striven to maintain it in the field, fighting and bleeding for my country, and at my desk studying and discussing scientific data; in the Arctic Circle, when pursuing scientific and geographical work, or later, when stranded by adverse fate, and starving and freezing upon the barren coast. This marked and public testimonial of your approval cannot fail to make me doubly jealous of it in days to come."

Lieut. Ray followed, returning thanks in his own behalf.

After other speeches Sir Henry Lefroy presented Lieutenant Greely with the following informal address:

"Montreal, Sept. 2, 1884.

"The undersigned, on behalf of many warm friends and admirers, and as representing various professional and scientific pursuits, desire to express to you their appreciation of the courage and devotion which has characterized your conduct during the trying circumstances of your late Arctic service. We trust that your health may soon be restored, and that you may long be spared to tender, as during your past distinguished career, those valuable and distinguished services to your great country which have already placed you among the foremost of scientific explorers of the age.

"Yours faithfully, Rayleigh, President."

In introducing Lieut. Greely, Sir Henry Lefroy, referring to the persistence of purpose shown by his party in bringing back the pendulum apparatus, remarked that there was nothing nobler in the annals of scientific heroism than the determination of these hungry men to drag the cumbersome box along their weary way.

It was fully two minutes after rising before Lieut. Greely could speak, so great was the outburst of enthusiasm which greeted him. He remarked that he was surprised to learn that the ground did not thaw lower at Lieut. Ray's station, which was ten degrees farther south than his own, where the ground thawed to a much greater depth—namely, twenty to thirty feet. In regard to an open polar sea, he differed from Lieut. Ray. He did not believe there was a navigable sea at the pole, but he was of the opinion that there was open water somewhere about.

The geographical work of the Lady Franklin Bay expedition covers nearly three degrees of latitude and over forty degrees of longitude. Starting from latitude 81 deg. 44 min. and longitude 84 deg. 45 min., Lieut. Lockwood reached, May 18, 1882, on the north coast of Greenland, latitude 83 deg. 24 min. and longitude 40 deg. 46 min. From the same starting point he reached to the southwest, in May, 1883, Greely Fiord, an inlet of the Western Polar Ocean, latitude 80 deg. 48 min. and longitude 78 deg. 26 min. This journey to the northward resulted in the addition to our charts of a new coast line of nearly 100 miles beyond the farthest point seen by Lieut. Beaumont, R.N. It also carried Greenland over 400 miles northward, giving that continent a much greater extension in that direction than it had generally been credited with.

In a subsequent speech he took occasion to say that a fact had surprised him. It was the discovery that when the tide was flowing from the North Pole it was found by his observations that the water was warmer than when flowing in the opposite direction. He took the trouble to have prepared an elaborate set of observations showing this wonderful phenomenon, which would eventually be published. To him these pecularities were unexplainable, and be hoped that the observations would be studied by his hearers, and some explanation found in regard to the thermometric observations of the expedition. He remarked that the mean temperature for the year of the hourly observations was 5 degrees below zero, which justified him in saying his station was the coldest point of earth ever reached.

* * * * *



DIAMOND MINING IN BRAZIL.

It was in 1729 that the Portuguese government learned of the discovery of the diamond that had been made in the rivers of the environs of Diamantina by some adventurers who had entered this region in search of gold. Since that epoch the exploitation of this gem, pursued under varied regimes, and with diverse success, has never ceased. As soon as it heard of this discovery, the Portuguese government thought it would make as much profit out of it as possible, so it no longer authorized any other exploitation in the Diamantina regions than that of the diamond, and it imposed upon such exploitation a tax that was fixed at 28 francs per laborer in 1729 and 224 in 1734. From 1734 to 1739 all operations were suspended, and a more lucrative organization for the treasury was sought for. In 1739 the era of contracts was inaugurated. The exploitation of the diamond was farmed out for four years to a contratador, who was to work a certain territory with a number of men, fixed at 600 as a maximum, and to pay into the treasury a sum per workman (whether working or not) that varied from 1,288 francs per year in 1734 to 1,344 francs for the last contract, that ended in 1772. At this epoch the government took the exploitation of the diamond in hand, and gave it in charge of a special administration, which was submitted to the direction of the treasury of Lisbon, and which had at its head a comptroller. This new regime lasted till 1845. In order to render the surveillance of the treasury agents efficient, and prevent smuggling (which can be so easily done with an object like the diamond), it was necessary to impose a special regime over the entire region of Diamantina, and, in fact, the latter was, up to the independence of Brazil, submitted to Draconian regulations.



We only know the quantity of stones that were discovered during the period when operations were directed by the Royale Extraccao, from 1772 to 1845, and this was 269,870 grammes, or more than 1,300,000 carats. It should be understood that what was taken by stealth does not enter into this total, and it must be stated that during the latter years, when the Extraccao existed only in name, smuggling must have been active.



Since that epoch the exploitation has been continued by lessees of the diamondiferous grounds. It is almost impossible to estimate what the territory has produced. The discovery of the Cape deposits has given it a terrible blow. Although the Brazilian diamond is much more beautiful, and for this reason is held at a much higher price, these new exploitations, by annually throwing large quantities of stones upon the market, have led to a great reduction in the price, and the Diamantina exploitations, which have become long, difficult, and costly, have received a serious set-back. So the annual production of this region, which was estimated for the years preceding 1870 at 3,000 oitavas (about 52,000 carats), is now scarcely 500.

The rivers in the environs of Diamantina rim at the bottom of deep and narrow gorges that have been scooped out to depths of 300 or 400 meters through the denuded plateau in whose center stands the city of Diamantina. In the bed of these rivers, in places where they have not yet been worked, there may be found, underneath a stratum of modern sand, another of rocks, and finally a diamondiferous deposit of rounded pebbles, mixed with sand. This gravel, which is characterized in the first place by the fact that all its elements are rounded, and next by the presence of a large number of minerals (among which the most important are all the oxides of titanium, different oxides of iron, tourmaline, and a whole series of hydrated phosphates of complex composition), is called in the language of the country cascalho. It is the matrix of the diamond, and the latter is extracted from it by washing. It is arranged in roundish masses upon the beds of the rivers, and is met with at depths ranging from a few decimeters up to 25 and 30 meters.

The same material, with the same name, is also found deposited at all heights upon small terraces at the sides of the valleys through which the rivers flow. It is coarser and less rolled, and has very likely been deposited by risings of the rivers during the period when the valleys were being formed. These deposits bear the name of gupiarras. Finally, it is found in a still coarser state, mixed with red earth and deposited in horizontal strata upon the upper plateau. It is then called gorgulho.

Of these different deposits, the most important are those of the river beds, the material here having undergone a true mechanical preparation and being richer. These are the deposits that have been the object of the most important exploitations.

The year is divided into two distinct seasons—the dry, from May to September, during which rain is exceptional, and the rainy, from October to April. As water is necessary for all the operations, no work can be done upon the high plateaux except through rain water stored up in large reservoirs. These beds form what are called the "rainy season washings." In the rivers the working of the beds requires a preliminary drying, which is effected by diverting the river's course. Now in all this rocky and denuded region the water that falls runs immediately to the river, and causes terrible freshets therein; so operations capable of keeping the bed dry would be out of proportion to the probable results of the exploitation, whence it follows that the latter is only possible in dry weather, and these deposits are therefore called "dry season washings."

These deposits are still worked in our day as they were in the time of the Portuguese. In order to dry the bed a dam is constructed, and the river is either diverted into a plank flume supported by piles, or into a canal dug along the shore, or by means of tight walls, according to the lay of the place. The second process, which is preferable to the first, is in fact impossible when the river runs, as is often the case, in a narrow, abrupt, walled channel. These works are sometimes very important. In 1881, the Acaba Mundo flume was 140 meters in length and 5.2 m. wide, and, with a velocity of 2.25 m., discharged 4,500 liters per second; still longer ones might be cited that discharged as much as 8,000 liters.

In the dry part of the river the extraction of the sand, stones, and cascalho is done solely by hand. The men carry the sand upon their heads in small wooden bowls called carumbes, which hold about 15 kilogrammes, and throw it somewhere where the deposit will not interfere with the exploitation. Almost all of these men are negroes, who run with their load upon their head over the white sand, singing some song of their country. It, is very picturesque, but it is doubtful whether it is economical.

Since the century and a half that these rivers have been dug and redug, it may be admitted that wherever the cascalho has been easy of access it has been removed; and that wherever it has not been, little attempt has been made to work it. How have these attempts, which have doubtless been made at several periods, come out? This would at present be very difficult to ascertain. The exploitations have been too numerous to allow us now to estimate the value of a bed from the data furnished by geology, and local tradition is too uncertain or exaggerated to allow us to place much confidence in it.

We can, at the very most, say that if some points still remain intact it must be because the exploitation of them was too difficult with the processes that were employed, and this should be a reason, were it desired to attempt new operations, for having recourse to entirely different modes of work.

It would seem rational, as regards this, to try to put to profit the hydraulic power that the flumes and canals render disposable for mechanically extracting the sand. The field to be worked being naturally long and narrow, it would be the proper thing to employ a series of inclined planes distributed along the banks, actuated by water wheels, and corresponding to so many small working points. The river often flows through a genuine canon with nearly vertical walls, where space would be absolutely wanting for installing wheels elsewhere than at the exit of the canal, and if may become necessary to distribute the power of these wheels along the works. In these regions of difficult access and few resources it is necessary to dispense with complicated apparatus, and one might in such a case, it would seem, try electric motors, whose installation would be easy. An exploitation in accordance with these ideas was begun for the first time in 1883 upon the Ribeirao de Inferno at Portao de Ferro. We shall describe it.

Once established in the country, the first thing to do is to form roads so as to secure communications with the neighboring villages and forests, and afterward to cut down trees for building houses. These latter are usually constructed, for these works, of untrimmed wood and mud, with thatched roof. There were thus constructed at Portao de Ferro a few kilometers of roads, then some houses for the engineers and special workmen, barracks for 200 laborers, stores, kitchens, etc., a forge, and a shop with a lathe and a saw run by a wheel at the side. It was afterward necessary to repair the old lateral canal which had been dug out of the rock in the times of the Royal Extraction, but which had been torn open for a considerable length. This necessitated the erection of tight walls of dry stone, grass, and mud, for a length of 200 meters, and with thicknesses of from 6 to 10 meters.

In order to divert the water into this canal, it was necessary to raise its level 5 meters. The dam, then, had to support a strong pressure, and it could not be built upon sand. It therefore became necessary to build a temporary dam and to turn the river into a plank flume, so as to make it possible to dig at the location of the permanent dam in order to reach a solid bottom at a depth of nearly 4 meters. The permanent dam thus had a total height of 10 meters, with a thickness of 15 at the base and 7 at the top. It was constructed of dry stone, grass, and earth, with the addition of strong wood-work. The rocks upon which it had to be built were full of fissures, and when it was desired to close it great leakages of water occurred, which came near ruining it and necessitated the construction of a second wall behind it and a talus of earth in front. The dam as shown in Fig. 1, when finished, had a thickness of 25 meters at the base. It was closed on the second of July, and had a storage capacity of 55,000 cubic meters.

The principal excavation was begun at the point where the bed was deepest, and which consequently the older miners must have had most trouble in reaching. Here were set up two Letestu pumps that were actuated by a four-horse wheel.

These pumps lifted 50 cubic meters per hour. All except the pump chambers and pipes was made of wood on the spot. The water that was lifted was carried away from the works in a flume 160 meters in length, which likewise removed the water from the motive wheels.

For the service of the same excavation two simple acting inclined planes were installed that were moved by a four-horse wheel. Fig. 2 gives a general view of the arrangement.

The tracks of these planes were made of wood. Steel rails, however, had been brought for the cars, along with the cables and the metallic parts of the windlass; but all else was made upon the spot, including all the wooden pulleys for transmitting motion from the wheel to the windlasses.

This excavation reached bottom at a depth of 16 meters. The second touched bottom at about 10 meters, and gave access to a subterranean canal, which was followed for about 20 meters. The extraction of sand was effected here by an inclined plane moved by a Gramme machine. The generatrix had to make 1,500 revolutions, and be set in motion by an overshot wheel. As time was wanting, it became necessary to diminish to as great a degree as possible the number of parts to be employed in the transmission of motion, and since there was an abundance of water, a velocity of 15 revolutions was accepted for the wheel, which, with a total fall of 4.8 meters, had to give a power of eight horses. A three meter pulley was placed upon the shaft of the wheel. This was made of freshly cut wood that had been exposed to the sun. In order to give it sufficient stability and prevent its warping, it was placed against the wheel in such a way as to rest upon the latter's spokes. This rendered it necessary to give up the idea of using a belt, since it was not possible to prevent its getting wet. Cords could not be found in the country, and so it was necessary to make use of a too heavy chain, which was in no wise intended for such a purpose, and which at a velocity of 15 revolutions began to swing and necessarily absorbed much power. The large pulley drove one of 0.4 m. upon an intermediate shaft. Upon this latter a 2.6 m. wooden pulley directly drove, through a belt, the 0.2 m. pulley of the generatrix.

From this may be judged what the country's resources are. The motor, by means of a belt, actuated a windlass provided with suitable checking gearings. The distance of the two machines was 116 meters. Save the transmission by chain, the whole worked in a satisfactory manner. The performance could only be estimated in a lump, by comparing on the one hand the theoretical work of the fall of water, and, on the other, that of the vertical elevation of the car; and, further, one was obliged to estimate the weight of the latter. If we allow 1,000 kilogrammes for the weight of a car that received 360 liters of dry sand or 300 of wet, the performance was 19 per cent., and appeared to be satisfactory, considering the conditions under which the installation was made. This experiment was at all events of such a nature as to indicate the use of these machines in cases where the arrangement of the locality absolutely necessitates a transmission of power.

The first workmen reached Portao de Ferro December 15, 1882, and the material shipped from France did not arrive until April 25, 1883. Operations were suspended about the 25th of September, since, for a fortnight already, there had no longer been any doubt as to the manner in which the river bed had been cleaned by former operators.

As a result of this first experiment, the proof remained that it would be easy in future exploitations to introduce into the country methods of work that are quicker and more economical than those now in use. In fact, all the operations were performed with natives of the country, with the exception of a carpenter and blacksmith from Rio Janeiro.—La Nature.

* * * * *



WHAT WE REALLY KNOW ABOUT ASIATIC CHOLERA.

NEW YORK, September 1, 1884.

To the Editor of the New York Medical Journal:

SIR: I have been exceedingly interested in Dr. Bartlett's suggestive article in your issue of August 30. But a sufficient number of well-established facts are known to account for all the peculiarities and vagaries of cholera.

1. Cholera has existed in Hindostan for centuries. It was found there by Vasco da Gama in 1496, and there is a perfectly authentic history of it from that time down to the present.

2. It is never absent from India, from whence it has been conveyed innumerable times to other countries. It has never become domiciled in any other land, not even in China, parts of which lie in the same latitude; nor in Arabia, to which country pilgrims go every year from India; nor in Egypt, nor Persia, with which communication is so frequent; much less in any other part of the world. Canton in China, Muscat and Mecca in Arabia, lie nearly in the same degree of latitude as Calcutta, in which cholera is always existent; yet these places only have cholera occasionally, and then only after arrivals of it from Hindostan.

3. The arrival of cholera in other countries is often involved in some easily removable obscurity, which is deepened only by the ignorance and want of veracity of quarantine and other officials.

4. Cholera is almost always preceded by a premonitory diarrhoea, which lasts from one or two to three or four or more days before urgent and characteristic symptoms show themselves. Of 6,213 cases, no less than 5,786 had preceding diarrhoea. The sufferers from this sow the germs of the disease in numerous, often distant and obscure, places, to which no choleraic person is supposed to have come.

5. The discharges swarm with infective bacteria of various kinds, some of which, especially Koch's comma bacilli, seem to be specific.

6. The disease has been reproduced in men and some few animals by their swallowing the discharges.

7. The discharges, according to the experiments of Thiersch, Burdon-Sanderson, and Macnamara, are not virulent and poisonous for the first twenty-four hours; on the second day eleven per cent. of those who swallow them will suffer; on the third day, thirty-six per cent.; on the fourth day, ninety per cent.; on the fifth day, seventy-one per cent.; on the sixth day, forty per cent.; and after that the discharges have no effect—the bacteria die, and the poison becomes inert.

Professor Robin reproduced cholera in dogs, and the celebrated dog Juno died of cholera in Egypt last year. Professor Botkin, of the University of Dorpat, reproduced cholera in dogs by the subcutaneous injection of the urine of cholera patients. Even if the comma bacilli are not found in the urine, other bacteria are; and even Koch supposes that they secrete a virulent poison similar to that of some insects, which may be absorbed into the blood and escape from the kidneys.

8. Some of the manners and customs of the Hindoos are very peculiar. They always defecate upon the open ground, and will not use privies or latrines This is a matter of religious obligation with them. It is also obligatory upon them to go to stool every morning; to use the left hand only in wiping themselves; to wash their fundaments after stool; to wash their whole persons and clothing every day; and, finally, also to rinse their mouths with water, and this they often do after washing in foul tanks, or still fouler pools of water. On steamships, where tubs of water were provided for washing their fundaments after defecation, Surgeon-General De Renzy saw many Hindoos rinse their mouth with the same water.

9. The population of Hindostan is nearly three hundred millions, and at least one hundred million pounds of faecal matter is deposited on the open ground everyday, and has been for centuries.

10. Much of this foul matter is washed by rains into their tanks and pools of water, which they use indiscriminately for washing, cooking, and drinking purposes.

11. The poison of cholera has repeatedly been carried in soiled clothing packed in trunks and boxes, and conveyed to great distances.

12. Articles of food, even bread and cake, as well as apples, plums, and other fruit, handled by persons in the incipient stages of cholera, have been known to convey the disease.

13. The number of epidemics produced by cholera discharges getting into drinking water are almost innumerable, and those from contaminated milk are not few.

14. The first case of cholera is generally counted from the first fatal one, whereas this is almost always preceded by non-fatal ones, which have escaped notice. And each subsequent fatal case is interwoven by one, or several, or even many, non-fatal causes. If the string of a row of beads is broken, and the beads scattered everywhere, it would be just as improper to say that they had never been upon a string as to say that, because all the fatal cases of cholera cannot be traced to equally fatal ones, no connection ever existed between them.

These points are necessarily stated categorically, but every one can be proved, if proof is called for. The numerous and very large pilgrimages of the Hindoos must not be forgotten.

John C. Peters, M.D.

83 Madison Avenue.

* * * * *



DR. KOCH ON THE CHOLERA.

An important and influential conference[1] upon cholera was opened in Berlin at the Imperial Board of Health on the evening of July 26. There were present Drs. v. Bergmann, Coler, Eulenbrg, B. Fraenkel, Gaffky, Hirsch, Koch, Leyden, S. Neumann, Pistor, Schubert, Skreczka, Struck, Virchow, and Wollfhuegel. The conference had been called at the instance of the Berlin Medical Society, whose President, Prof. Virchow, explained that it was thought advisable Dr. Koch should, in the first instance, give a demonstration of his work before a smaller body than the whole society, so that the proceedings might be fully reported in the medical press. He mentioned that Herr Director Lucanus and President Sydow had expressed their regret at being unable to be present, as well as many others, including Drs. Von Lauer, Von Frerichs, Mehlhausen, and Kersaudt. Before the meeting Dr. Koch exhibited microscopical specimens and drawings of the cholera bacillus, and demonstrated the method of its preparation and cultivation. The preparations included specimens of choleraic dejections dried on covering glasses, stained with fuchsin or methyl-blue, and examined with oil immersion, one-twelfth, and Abbe's condenser; also sections of intestine preserved in absolute alcohol, and stained with methyl-blue. There were also cultures in gelatin, etc.

[Footnote 1: A detailed report is published in the Berliner Klinische Wochenschrift Aug. 4.]

Dr. Koch commenced by remarking that what was required for the prevention of cholera was a scientific basis. Many and diverse views as to its mode of diffusion and infection prevailed, but they furnished no safe ground for prophylaxis. On the one hand, it was held that cholera is a specific disease originating in India; on the other, that it may arise spontaneously in any country, and own no specific cause. One view regards the infection to be conveyed only by the patient and his surroundings; and the other that it is spread by merchandise, by healthy individuals, and by atmospheric currents. There is a like discrepancy in the views on the possibility of its diffusion by drinking water, on the influence of conditions of soil, on the question whether the dejecta contain the poison or not, and on the duration of the incubation period. No progress was possible in combating the disease until these root questions of the etiology of cholera are decided.

Hitherto the advances in knowledge upon the etiology of other infective diseases have done little toward the etiology of cholera. These advances have been made within the last ten years, during which time no opportunity—at least not in Europe—has occurred to pursue researches; and in India, where there is abundant material for such research, no one has undertaken the task. The opportunity given by the outbreak of cholera in Egypt last year to study the disease before it reached European soil was taken advantage of by various governments, who sent expeditions for the purpose. He had the honor to take part in one of these, and in accepting it he well knew the difficulties of the task before him, for hardly anything was known about the cholera poison, or where it should be sought; whether it was to be found only in the intestinal canal, or in the blood, or elsewhere. Nor was it known whether it was of bacterial nature, or fungoid, or an animal parasite—e.g., an amoeba. But other difficulties appeared in an unexpected direction. From the accounts given in text-books he had imagined that the cholera intestine would show very slight changes, and would be filled with a clear "rice-water" fluid. He had not fully recollected the conditions met with in post-mortem examinations had formerly made, and was therefore at first surprised to meet with quite a different state of things. For he soon found that in a large majority of cases remarkably severe lesions were present in the intestines. In other cases the changes were slighter, and eventually he met with some which, to a certain extent, corresponded with the type described in text-books. But it was some time, and after many inspections, before he was enabled to correctly interpret the varied changes met with. In spite of a most careful examination of all other organs and of the Mood, nothing was found to establish the presence of an infective material, and attention was finally concentrated on the intestinal conditions.

There were cases in which the lower segment of the small intestine, most marked immediately above the ileocaecal valve, extending thence upward, was of a dark reddish-brown color, the mucous membrane being covered with superficial haemorrhages. In many cases the mucous membrane appeared to be superficially necrosed, and covered with diphtheritic patches. The intestinal contents in such cases were not colorless, but consisted of a sanguinolent, ichorous, putrid fluid. Other cases showed a gradual transition to a less marked change. The redness was less intense, and was in patches, while in others the injection was limited to the margins of the follicular and Peyerian glands, giving an appearance which is quite peculiar to cholera. In comparatively few cases were the changes so slight as to consist in a somewhat swollen and opaque condition of the superficial layers of the mucous membrane, with delicate rosy-red injection, and some prominence of the solitary follicles and Peyer's patches. In such cases the intestinal contents were colorless, but resembling meal-soup rather than rice-water. In only a solitary instance were the contents watery and mucoid. Microscopical examination of the intestine and its contents revealed, especially in the cases where the margins of Peyer's patches were reddened, a considerable invasion of bacteria, occurring partly within the tubular glands, partly between the epithelium and basement membrane, and in some parts deeper still. Then he found cases in which, besides bacteria of one definite and constant form, there were others also accumulated within and around the tubular glands, of various size, some short and thick, others very fine; and be soon concluded that he had to do here with a primary invasion of pathogenic bacilli, which, as it were, prepared the tissues for the entrance of the non-pathogenic forms, just as he had observed, in the necrotic, diphtheritic changes in the intestinal mucosa and in typhoid ulcers.

Passing to speak of the microscopical character of the contents of the bowel, Dr. Koch said that owing to the sanguinolent and putrescent character of these in the cases first examined, no conclusion was arrived at for some time. Thus he found multitudes of bacteria of various kinds, rendering it impossible to distinguish any special forms, and it was not until he had examined two acute and uncomplicated cases, before haemorrhage had occurred, and where the evacuation had not decomposed, that he found more abundantly the kind of organism which had been seen so richly in the intestinal mucosa. He then proceeded to describe the characters of this bacterium. It is smaller than the tubercle bacillus, being only about half or at most two-thirds the size of the latter, but much more plump, thicker, and slightly curved. As a rule, the curve is no more than that of a comma (,) but sometimes it assumes a semicircular shape, and he has seen it forming a double curve like an S, these two variations from the normal being suggestive of the junction of two individual bacilli. In cultures there always appears a remarkably free development of comma shaped bacilli. These bacilli often grow out to form long threads, not in the manner of anthrax bacilli, nor with a simple undulating form, but assuming the shape of delicate long spirals, a corkscrew shape, reminding one very forcibly of the spirochaete of relapsing fever. Indeed, it would be difficult to distinguish the two if placed side by side. On account of this developmental change, he doubted if the cholera organism should be ranked with bacilli; it is rather a transitional form between the bacillus and the spirillum. Possibly it is a true spirillum, portions of which appear in the comma shape, much as in other spirilla—e. g., spirilla undula, which do not always form complete spirals, but consist only of more or less curved rods. The comma bacilli thrive well in meat infusion, growing in it with great rapidity. By examining, microscopically, a drop of this broth culture the baccilli are seen in active movement, swarming at the margins of the drop, interspersed with the spiral threads, which are also apparently mobile. They grow also in other fluids—e. g., very abundantly in milk, without coagulating it or changing its appearance. Also in blood serum they grow very richly.

Another good nutrient medium is gelatine, wherein the comma bacilli form colonies of a perfectly characteristic kind, different from those of any other form of bacteria. The colony when very young appears as a pale and small spot, not completely spherical as other bacterial colonies in gelatine are wont to be, but with a more or less irregular, protruding, or jagged contour. It also very soon takes on a somewhat granular appearance. As the colony increases, the granular character becomes more marked, until it seems to be made up of highly refractile granules, like a mass of particles of glass. In its further growth the gelatine is liquefied in the vicinity of the colony, which at the same time sinks down deeper into the gelatine mass, and makes a small thread-like excavation in the gelatine, in the center of which the colony appears as a small white point. This again is peculiar; it is never seen, at least so marked, with any other bacterium. And a similar appearance is produced when gelatine is inoculated with a pure culture of this bacillus, the gelatine liquefying at the seat of inoculation, and the small colony continually enlarging; but above it there occurs the excavated spot, like a bubble of air floating over the bacillary colony. It gives the impression that the bacillus growth not only liquefies the gelatine, but causes a rapid evaporation of the fluid so formed. Many bacteria also have the power of so liquefying gelatine with which they are inoculated, but never do they produce such an excavation with the bladder-like cavity on the surface.

Another peculiarity was the slowness with which the gelatine liquefied, and the narrow limits of this liquefaction in the case of a gelatine disk. Cultures of the comma bacillus were also made in agar-agar jelly, which is not liquefied by them. On potato these bacilli grow like those of glanders, forming a grayish-brown layer on the surface. The comma bacilli thrive best at temperatures between 30 deg. and 40 deg. C., but they are not very sensitive to low temperatures, their growth not being prevented until 17 deg. or 16 deg. C. is reached. In this respect they agree with anthrax bacilli. Koch made an experiment to ascertain whether a very low temperature not merely checked development but killed them, and subjected the comma bacilli to a temperature of 10 deg. C. They were then completely frozen, but yet retained vitality, growing in gelatine afterward. Other experiments, by excluding air from the gelatine cultures, or placing them under an exhausted bell jar, or in an atmosphere of carbonic acid, went to prove that they required air and oxygen for their growth; but the deprivation did not kill them, since on removing them from these conditions they again began to grow.

The growth of these bacilli is exceptionally rapid, quickly attaining its height, and after a brief stationary period as quickly terminating. The dying bacilli lose their shape, sometimes appearing shriveled, sometimes swollen, and then staining very slightly or not at all. The special features of their vegetation are best seen when substances which also contain other forms of bacteria are taken—e. g., the intestinal contents or choleraic evacuations mixed with moistened earth or linen and kept damp. The comma bacilli in these conditions multiply with great rapidity so as to far outnumber the other forms of bacteria, which at first might have been in far greater abundance. This state of affairs does not last long; in two or three days the comma bacilli began to die off, and the other bacteria began to multiply. Precisely the same thing takes place in the intestine, where, after the rapid initial vegetation is over, and when exudation of blood occurs in the bowel, the comma bacilli disappear and putrefactive bacteria predominate. Whether the occurrence of putrefaction is inimical to the comma bacilli has not been proved, but from analogy it is very probable. At any rate, it is important to know this for certain, for if it be so, then the comma bacilli will not thrive in a cesspit, and then further disinfection would be unnecessary. These bacilli thrive best in fluids containing a certain amount of nutriment. Experiments have not yet shown the limits in this respect, but Koch has found them capable of growing in meat broth diluted ten times.

Again, if the nutrient medium become acid in reaction their growth is checked, at least in gelatine and meat infusion; but singularly enough, they continue to grow on the surface of a boiled potato which has become acid, showing that all acids are not equally obnoxious to them. But here, as with other substances which hinder their growth, they do not kill the bacilli. Davaine has shown that iodine is a strong bactericide. He experimented with anthrax bacilli in water to which iodine was added, and the bacilli were destroyed. But practically the organisms have to be dealt with in the alkaline contents of the bowel, or in the blood or fluids of the tissues, where iodine cannot remain in the free state. Koch found that the addition of an aqueous solution of iodine (1 in 4,000) to meat infusion, in the proportion of 1 in 10, did not in the least interfere with the growth of the bacilli in that medium. He did not pursue this line of inquiry, seeing that in practice larger quantities of iodine than that could not be given. Alcohol first checks the development of the comma bacilli when it is mixed with the nutrient fluid in the proportion of 1 in 10, a degree of concentration which renders it impracticable for treatment. Common salt was added to the extent of 2 per cent. without influencing the growth of the bacilli. Sulphate of iron, in the proportion of 2 per cent., checks this growth, probably by precipitating albumimites from the fluids, and possibly also by its acid reaction; certainly it does not seem to have any specific disinfecting action—i.e., in destroying the bacilli. Indeed, Koch thinks that the admixture of sulphate of iron with faecal matter may arrest putrefaction, and really remove what may be the most destructive process to the comma bacilli. Hence he would distinguish between substances which merely arrest putrefaction and those which are bactericidal; for the former may simply serve the purpose of preserving the infective virus. Among other substances which prevent the growth of the comma bacilli may be mentioned alum, in solutions of the strength of 1 in 100; camphor, 1 in 300; carbolic acid, 1 in 400; oil of peppermint, 1 in 2,000; sulphate of copper, 1 in 2,500 (a remedy much employed, but how much would really be needed merely to hinder the growth of the bacilli in the intestine!); quinine, 1 in 5,000; and sublimate, 1 in 100,000. In contrast with the foregoing measures for preventing the growth of these bacilli is the striking fact that they are readily killed by drying. This fact is proved by merely drying a small drop of material containing the bacilli on a cover-glass, and then placing this over some of the fluid on a glass slide. With anthrax bacilli vitality is retained for nearly a week; whereas, the comma bacillus appears to be killed in a very short time. Thus it was found that although vitality was retained—depending largely upon the number of bacilli—for a short time, yet withdrawal of the nutrient fluid for an hour or even less often sufficed; and it never happened that the bacilli retained vitality after a deprivation lasting twenty-four hours. These results would seem to point to the fact that the comma bacillus does not, like the organisms of anthrax and vaccinia, pass into the resting state (Daner-zustande) by drying; and if so, it is one of the most important facts in the etiology of cholera. Much, however, remains to be done, especially with regard to the soiled linen of cholera patients being kept in a damp state. He found that in soiled articles, when dried for a time, varying from twenty-four hours and upward, the comma bacilli were quite destroyed. Nor was the destruction delayed by placing choleraic excreta in or upon earth, dry or moist, or mixed with stagnant water. In gelatine cultures the comma bacilli can be cultivated for six weeks, and also in blood serum, milk, and potato, where anthrax bacilli rapidly form spores. But a resting state of the comma bacilli has never been met with—a very exceptional thing in the case of bacilli, and another reason why the organism must be regarded rather as a spirillum than a bacillus, for the spirilla require only a fluid medium, and do not, like the anthrax bacilli, thrive in a dry state. It is quite unlikely that a resting state of the comma bacillus will ever be discovered; and, moreover, its absence harmonizes with our knowledge of cholera etiology.—The Lancet.

* * * * *

[THE MEDICAL RECORD.]



MALARIA.—THE NATURAL PRODUCTION OF MALARIA, AND THE MEANS OF MAKING MALARIAL COUNTRIES HEALTHIER.

[Footnote: An Address delivered at the Eighth Session of the International Medical Congress, Copenhagen, August 12, 1884.]

By Conrad Tommasi Crudeli, M.D., Professor of Hygiene, University of Rome, Italy.

Before entering upon my subject, I must crave the indulgence of those of my colleagues whose language I have borrowed for any italicisms that I may use, as well as for the foreign accent which must strike their ears more or less disagreeably. Desiring to respond as well as lay in my power to the invitation with which I have been honored to discuss the hygienic questions relating to malaria, I have chosen the French language as being the one in which, apart from my mother tongue, I could express myself with the greatest ease and precision.

I shall be pardoned also, I hope, for having employed the terms "malaria" and "malarial districts" in place of the more commonly used expressions "paludal miasm" (miasme paludeen) and "marshy regions" (contrees marecageuses). The substitution is not a happy one from a literary point of view, but I have made it deliberately and for the following reason: The idea that intermittent and pernicious fevers are engendered by putrid emanations from swamps and marshes is one of those semi-scientific assumptions which have contributed most to lead astray the investigations of scientists and the work of public administrations. This idea, so widespread and so well established by the traditions of the school, is radically false. The specific ferment which engenders those fevers by its accumulation in the atmosphere which we breathe is not exclusively of paludal origin, and still less is it a product of putrefaction. Indeed, in every region of the globe between the two Arctic circles there are swamps and marshes, steeping-tanks of hemp and flax, large deltas where salt and fresh waters mix, and yet there is no malaria there, although putrid decomposition is on every side. On the other hand, in the same parts of the globe there are places which are not and never were marshy, and in which there is not the least trace of putrefaction, but which, nevertheless, produce malaria in abundance. I reject, therefore, wholly the paludal assumption, and in order to express this view in the title of my paper, have been forced to employ terms which to my hearers may sound like italicisms.

The Italians generally have not this paludal notion, for experience taught them long ago that malaria is produced nearly everywhere—in marshy districts as well as in those which might almost be called arid; in a volcanic soil as well as in the deposits of the Miocene and Pliocene periods and the ancient and modern alluvia; in a soil rich in organic matters as well as in one containing almost none; in the plains as well as on the hills or mountains. The word malaria (bad air), which it is the sad privilege of Italy to have lent to all languages to express the cause of intermittent and pernicious fevers, represents, then, among the majority of our rural populations, the idea of an agent which may infect any sort of country, whatever may be its hydraulic and topographical conditions, and whatever may be its geological formation. This word, therefore, is the one best suited to designate this specific ferment in question, and I have on this account, employed it and its adjectival derivatives in order not to resuscitate the idea of the exclusively paludal origin of the morbific agent.

Previous Part     1  2  3     Next Part
Home - Random Browse