p-books.com
Scientific American Supplement, No. 358, November 11, 1882
Author: Various
Previous Part     1  2  3
Home - Random Browse

Microscopists who are interested in the study of histology and pathology have long felt the necessity for a better method of freezing animal and vegetable tissue than has been heretofore at their command.

In hardening tissues by chemical agents, the tissues are more or less distorted by the solutions used, and the process is very slow. Ether and rhigolene have been employed with some degree of success, but both are expensive, and they cannot be used in the presence of artificial light, because of danger of explosion. Another disadvantage is that two persons are required to attend to the manipulations, one to force the vapor into the freezing box, while the other uses the section-cutting knife.

The moment the pumping of the ether or rhigolene ceases, the tissue operated on ceases to be frozen, so ephemeral is the degree of the cold obtained by these means.

The principal advantages to be obtained by the use of this microtome are, first, great economy in the method of freezing, and, second, celerity and certainty of freezing. With an expenditure of twenty-five cents, the tissues to be operated on can be kept frozen for several hours at a time.



Small objects immersed in gum solutions are frozen and in condition for cutting in less than one minute.

The method of using this microtome can be understood by reference to the illustration. A represents a revolving plane, by which the thickness of the section is regulated, in the center of which an insulated chamber is secured for freezing the tissue. It resembles a pill-box constructed of metal. A brass tube enters it on each side. The larger one is the supply tube, and communicates with the pail, a, situated on bracket, s, by means of the upper tube, t. To the smaller brass tube is attached the rubber tube, t b, which discharges the cold salt water into a pail placed under it. (See b.) The salt and water as it passes from pail, a, to pail, b, is at a temperature of about zero. The water should not be allowed to waste. It should be returned to the first pail for continual use, or as long as it has freezing properties. As a matter of further economy, it is necessary to limit the rate of exit of the freezing water. This is regulated by nipping the discharge-tube with the spring clothes pin supplied for the purpose. Should the cold within the chamber be too intense, the edge of the knife is liable to be turned and the cutting will be imperfect. When this occurs the flow of water through the chamber is stopped by using the spring clothes-pin as a clip on the upper tube. In order to regulate the thickness of the tissue to be cut a scale is engraved on the edge of the revolving plate, A, which, in conjunction with the pointer, e, indicates the thickness of the section.—Microscopical Journal.

* * * * *

THE ST. GOTHARD TUNNEL.—It appears that the traffic through the St. Gothard Tunnel has increased, since the inauguration of through international services, to such an extent that the Company have already obtained sanction for laying the second pair of rails in the tunnel. The Great Eastern Railway Company has increased its steamer traffic, and built additional station accommodation at Harwich.

* * * * *



VINCENT'S CHLORIDE OF METHYL ICE MACHINE.

Chloride of methyl was discovered in 1840 by Messrs. Dumas and Peligot, who obtained it by treating methylic alcohol with a mixture of sea salt and sulphuric acid. It is a gaseous product at ordinary temperature, but when compressed and cooled, easily liquefies and produces a colorless, neutral liquid which enters into ebullition at 237.7 deg. above zero and under a pressure of 0.76 m.



Up to recent times, chloride of methyl in a free state had received scarcely any industrial application, by reason of the difficulty of preparing it in a state of purity at a low price. Mr. C. Vincent, however, has made known a process which permits of this product being obtained abundantly and cheaply. It consists in submitting to the action of heat the hydrochlorate of trimethylamine, which is obtained as a by-product in the manufacture of potash of beets. The hydrochlorate is thus decomposed into free trimethylamine, ammonia, and chloride of methyl. A washing with hydrochloric acid takes away all traces of alkali, and the gas, which is gathered under a receiver full of water, may afterward be dried by means of sulphuric acid, and be liquefied by pressure.



Pure liquid chloride of methyl is now an abundant product. There are two uses to which it is applied: first, for producing cold, and second, for manufacturing coal tar colors.



At present we shall occupy ourselves with the first of such applications—the production of cold.

The apparatus serving for the production of cold by this material are three in number: (1) the freezer (Figs. 1, 2, and 3), in which is produced the lowering of temperature that converts into ice the water placed in carafes or any other receptacles; (2) the pump (Figs. 4, 5, and 6), which sucks the chloride of methyl in a gaseous state up into the freezer and forces it into the liquefier; and (3) the liquefier, which is nothing else than a spiral condenser in which the chloride of methyl condenses, and from thence returns to the freezer to serve anew for the production of cold.



The Freezer.—This consists of a rectangular iron tank, 1 meter x 1 meter x 1.5 meters, containing a galvanized plate iron cylinder, A, kept in place by iron supports. This cylinder contains 24 horizontal tubes, which are open at the ends and riveted to vertical plates like those of tubular steam boilers. The tank is filled with a mixture of water and chloride of calcium, forming, as well known, an incongealable liquid. Into this liquid are plunged the receptacles containing the water to be converted into ice. The chloride of methyl is introduced through the cock, B, into the body of the cylinder, A, and surrounds and cools the tubes, as well as the incongealable liquid uninterruptedly circulating in the latter, by means of a helix, C, set in motion by a belt from the shop. This liquid is thus greatly lowered in temperature and freezes the water in the receptacles.



The Pump.—The pump in the larger apparatus has two chambers of unequal diameter, that is to say, it operates after the manner of compound engines.

The machine under consideration, being one that produces a moderate quantity of ice, has but a single chamber, as shown in Figs 4, 5, and 6. It is a suction and force pump, whose piston, E, is solid and formed of two parts, which are set into each other, and the flanges of which hold a series of bronze segments.



The chamber, properly so-called, is of iron, cast in one piece, and is surmounted with a rectangular tank, F, in which constantly circulates the cold water designed for cooling the sides of the cylinder; these latter always tending to become heated through the compression of the methyl chloride.

The cylinder heads are hollowed out in the middle, and carry the seats of the suction valves. Each of the latter communicates with a chamber, G G, in which debouches the pipe, H, communicating with the cylinder, A, of the freezer (Figs. 1, 2, and 3).



Above the cylinder there are two delivery valves which give access to the chamber, D, communicating with the worm of the liquefier (Fig. 7) through the pipe, J.

The piston of the pump is set in motion by a pulley, K, and a cranked shaft actuated by a belt from the shafting. The piston head is guided by a slide keyed to the frame.



The Liquefier.—This apparatus consists of a cylindrical tank, L, of 3 mm. thick boiler plate, mounted vertically on a masonry base and designed to be constantly fed with cool water. It contains a second cylindrical tank, M, of 6 mm. thick galvanized iron. This latter tank is provided with a cast-iron cover, on which are mounted the worm, N, and a pipe, O, connected with the tube of the pressure gauge. To the base of the tank, M, there is affixed, on a cast iron thimble, a cock, P, for setting up a communication between the tank and the pipe, R, which returns to the freezer through the cock, B (Fig. 1).



The cold water requisite for condensation enters the tank, L, through a pipe terminating in a pump or a reservoir. The waste water flows off through the tubulure, Q. The tank is emptied, when necessary, through the blow-off cock, S.



Operation of the Apparatus.—As has been remarked above, the cylinder, A, is filled with chloride of methyl. The pump, through suction, produces in this cylinder a depression from which there results the evaporation of a portion of the chloride of methyl, and consequently a depression of temperature which is transmitted to the incongealable liquid circulating in the tubes, and to the receptacles (carafes or otherwise) containing the water to be converted into ice.

The pump sucks in the vapor of mythyl chloride through the pipe, H, and through its suction valves, and forces it into the chamber, D, through its delivery valves, and from thence into the worm, N, through the pipe, J. Under the influence of compression and of the water contained in the tank, L, the methyl chloride liquefies and falls into the receptacle, M, from whence it returns to the freezer through the pipe, R.

Two pressure-gauges, one of them fixed on the freezer and the other on the liquefier, permit of regulating the running of the machine. The vacuum in the freezer is 0 to 1/2 atmosphere, and the pressure in the liquefier is 3 to 4 atmospheres. These apparatus make opaque ice, but will likewise produce transparent, if a pump for injecting air is adjoined. This, however, doubles the time that it takes to effect the freezing, and carries with it the necessity of doubling the number of moulds to have the same quantity of ice.

The cost price of ice made by this system depends evidently on the price of coal in each country, on the perfection of the boiler and motor, as well as on the power of the freezing machine. Putting the coal at 20 francs per ton, and the consumption at 2 kilogrammes per horse and per hour, ice may be obtained at a cost of about half a centime per kilogramme. The apparatus shown in the accompanying figures have been constructed according to the following data:

Production of ice per hour............ 25 kilogrammes. Production of heat units per hour..... 2.5 grammes. Quantity of ice produced per kilogramme of coal burned........... 5 kilogrammes. Water of condensation per hour........ 0.75 cubic meter.

These machines are employed not only for the manufacture of ice, but also in breweries for cooling the air of the cellars and fermenting rooms, or that of the vats themselves; in manufactories of chemical products; in distilleries; in manufactories of aerated waters, etc.

They may also be used in the carrying of meats and other food products across the ocean, and, in a word, in all industries in which it is necessary to obtain artificial cold.

The power necessary to operate apparatus that produce 25 kilogrammes per hour is about that of 3 horses.—Annales Industrielles.

* * * * *



CARBONIC ACID IN THE AIR.

[Footnote: An address before the Paris Academy.]

By M. DUMAS.

Of all the gases that the atmosphere contains, there is one which offers a special interest, as well on account of the part ascribed to it in the mutual interchange going on between the two organic kingdoms, as on account of the relation that it has been observed to occupy between earth, air, and water; this gas is carbonic acid.

Ever since the fact has been established that animals consume oxygen and give out carbonic acid as the product of respiration, while plants consume carbonic acid and give out oxygen, the question has often been asked whether the quantity of carbonic acid contained in the air did not represent a sort of sustaining reservoir which was being continually drawn on by the plants and resupplied by animals, so that it has doubtless remained unchanged owing to this double action.

On the other hand, Boussingault has long since shown that volcanic regions give out through crevices and fumaroles enormous quantities of carbonic acid. The deposition of carbonate of lime that is continually taking place on the sea-bottom is, on the other hand, fixing carbonic acid in quantities which we may accurately estimate from the strata of limestone seen on the surface of the earth. We might imagine, that in comparison with the huge volumes of carbonic acid sent forth in volcanic districts, even in the oldest one, and the mass of carbonate of lime deposited on the sea bottom, the results attributed to the life of plants and animals would be of no consequence either for increasing or diminishing the physiological carbonic acid in the air comparable with those which are accomplished by the purely geological exchange.

Schloesing has recently succeeded, by a happy application of the principle of dissociation, in showing that the amount of carbonic acid in the air bears a direct relation to the quantity of bicarbonate of lime dissolved in sea water. If the quantity of carbonic acid diminishes, the bicarbonate of the water is decomposed, half of its carbonic acid escapes into the atmosphere, and the neutral carbonate of lime is precipitated. The aqueous vapor condensed from the air dissolves part of the carbonic acid contained therein, and carries it along, when it falls as rain upon the earth, and takes up there enough lime to form the bicarbonate, which is thus carried back to the sea.

The physiological role of carbonic acid, its geognostic influence, and its relations to most ordinary meteorological phenomena on the earth's surface—all these contribute to give special weight to studies concerned in the estimation of the normal quantity of carbonic acid in the air.

Nevertheless, this estimation is attended with great difficulty. Not everyone is able to take up such questions, and not all processes are adapted to it. The first thought which would naturally arise would be to inclose a known volume of air in a given vessel, and then determine its carbonic acid by measuring or weighing it. In this way we should obtain the exact relation between a volume of air and the volume of carbonic acid in it, for any given moment, and in any given place. If, however, this be done with a ten-liter flask, for example, it would only hold 3 c.c. of carbonic acid, weighing 6 milligrammes; and, whether it is weighed or measured, the error may easily equal 10 per cent. of the real value, hence no deductions could be drawn from the observed facts.

For this reason larger volumes of air were taken, and a current of air, whose volume could be accurately measured by known methods, was passed through condensers capable of retaining the carbonic acid. But in this case the air must pass very slowly through it, so that the process may last several hours; and since the air is continually in motion, owing to vertical and horizontal currents, the experiment may be begun with the air of one place, and concluded with air from a far distant spot. For example, if an experiment lasting twenty-four hours was made in Paris when the air moved but four meters per second (nine or ten miles per hour), it might be begun with air from the Department of the Seine, and end with air from the Department of the Rhone, or the Belgian frontier, according to the direction of the wind.

So long as we had no analytical methods of sufficient delicacy to estimate with certainty the hundredth, or at least the tenth of a milligramme of carbonic acid, it was very difficult to determine the quantity in the air at a given time and place. It is frequently possible to analyze upon the plain air that has descended from the heights above, and to examine by bright daylight the effect of night upon the atmosphere.

Still other difficulties show themselves in such investigations. It seems very easy to collect carbonic acid in potash tubes, and to determine its amount from the increase in weight of the tubes; but, alas! to how many sources of error is this method exposed. If the potash has been in contact with any organic substance, it will absorb oxygen. If the pumice that takes the place of the potash contains protoxide of iron, it will also absorb oxygen. In both cases the oxygen increases the weight of the carbonic acid.

Every experimenter who has been compelled to repeat the weighing of a somewhat complicate piece of apparatus, with an interval of several hours between, knows how many inaccuracies he is exposed to if he is compelled to take into calculation the changes of temperature and pressure, and the moisture on the surface of the apparatus. After fighting all these difficulties, and frequently in vain, the experimenter begins to mistrust every result that depends only on difference in weight, and to prefer those methods whereby the substance to be estimated can be isolated, so that it can be seen and handled, weighed or measured, in a free state, and in its own natural condition.

The classical experiments of Thenard, of Th. de Saussure, of Messrs. Boussingault, on the quantity of carbonic acid in the air, are well known to every one: they need only to be organized, repeated, and multiplied.

J. Reiset, who has conducted a long and tedious series of experiments on this subject, has adopted a process that seems to offer every guarantee of accuracy. The air that furnishes the carbonic acid is aspirated through the absorption apparatus by two aspirators of 600 liters capacity. The temperature and pressure of the air are carefully measured. The carbonic acid is absorbed by baryta water in three bulb apparatus. The last bulb, which serves as a check to control the operation, remains clear, and proves that no binoxide of barium is formed. The baryta water used is titrated before and after the operation, and from the difference is calculated the quantity of carbonate formed, and hence of the carbonic acid.

These tedious experiments, which varied in duration from 6 to 25 hours, require at least two days of continuous labor. They were repeated 193 times by Reiset in 1872, 1873, and 1879. They were made in still weather, and in violent winds and storms. The air was taken at the sea-shore, in the middle of the fields, on the level earth, during harvests, in the forests, and in Paris. Under such varied conditions, the quantity of carbonic acid varied but little; the numbers obtained were between 2.94 and 3.1, which may be taken as a general average of the carbonic acid in the air.

The quantity of carbonic acid in the free atmosphere is tolerably constant, which must necessarily be the case according to Schloesing's proposed relation between the bi-carbonate of lime in the sea and the carbonic acid in the air. The only cause that seems at all competent to change the geological quantity of carbonic acid in the atmosphere is the formation of fog. As the aqueous vapors condense, they collect the carbonic acid; and the foggy air, as a rule, is more heavily laden with this gas than ordinary air.

It is not surprising that there is less carbonic acid in the air collected on clear summer days, in the midst of clover, etc., that is in an active reducing furnace; if anything is surprising, it is that the quantity of carbonic acid does not sink below 2.8.

It is also a matter for surprise that in Paris, among so many sources of carbonic acid, the furnace fires, the respiration of men and animals, and the spontaneous decomposition and decay of organic substances, the quantity of carbonic acid does not exceed 3.5.

If, then, the great general mean of normal atmospheric carbonic acid deviates but little from 2.9 or 3.0, it is not doubtful that under local conditions, in closed places, and under exceptional meteorological conditions, considerable variations may occur in these proportions. But these variations do not affect the general laws of the composition of the atmosphere.

There are two entirely distinct points from which the measurement of the atmospheric carbonic acid may be contemplated.

The first consists in considering it as a geological element which belongs to the gaseous envelope of the earth in general, and it leads us to express the general relation of carbonic acid to the quantity of air, as about three volumes in 10,000.

The second, which relates to accidental and local phenomena, to the activity of man and beast, to the effect of fires and of decomposing organic matter, to volcanic emanations, and finally to the action of clouds and rain, permits us to recognize the changes which can occur in air exposed to the influences mentioned, and to a certain extent confined. Without denying that it is of interest from a meteorological and hygienic standpoint, it does not take the same rank as first.

J. Reiset's experiments, by their number, accuracy, the large volumes employed, and the interval of years that separate them, have definitely established two facts on which the earth's history must depend: the first is, that the percentage of carbonic acid in the air scarcely changes; the second, that it differs but little from three ten-thousandths by volume.

These results are fully confirmed by the results which were obtained by Franz Schulze, in Rostock, in 1868, 1869, 1870, and 1871. The averages which he got, with very small variation, were 2.8668 for 1869, 2.9052 for 1870, and 3.0126 for 1871.

More recently Muentz and Aubin have analyzed air collected on the plains near Paris, on the Pic du Midi, and on the top of Puy-de-Dome. Their results agree with those published by Reiset and Schulze.

The grand average of carbonic oxide in the air seems to be tolerably fixed, but after this starting-point is established it remains to study the variations that it is capable of, not from local causes, which are of little importance, but from general causes connected with large movements of the air. Upon this study, which demands the co-operation of a definite number of observers stationed at different and distant points of the earth, the experiments being made simultaneously and by comparable methods.

M. Dumas called the attention of the Academy to this point, in connection with its mission of selecting suitable stations for observing the transit of Venus. The process and apparatus of Muentz and Aubin offer the means adapted for making these experiments, and seem sufficient to solve the problem which science proposes, of determining the present quantity of carbonic acid in the air.

If these experiments yield satisfactory results, as we have good reasons to believe they will, it is to be hoped that annual observations will be made in properly-chosen places, so as to determine the variations which may possibly take place in the relative quantity of atmospheric carbonic acid during the coming century.—Compt. Rend., p. 589.

[Although this proposition was made by a Frenchman to his fellow scientists, would it not be well for some American to accept the challenge, and bring it before the coming meeting of the American Association for the Advancement of Science, in the hope that we, too, may contribute our mite of effort in the same direction?—Ed. Knowledge.]

* * * * *



THE INFLUENCE OF AQUEOUS VAPOR ON THE EXPLOSION OF CARBONIC OXIDE AND OXYGEN.

[Footnote: Read before the British Association, Southampton Meeting, Section B, 1882.]

By HAROLD B. DIXON, M.A., Millard Lecturer in Chemistry, Balliol and Trinity Colleges, Oxford.

Two years ago I had the honor of showing before the Chemical Section of the British Association some experiments, in which a well-dried mixture of carbonic oxide and oxygen was submitted to electric sparks without exploding.[1] It was further shown that the introduction of a very minute quantity of aqueous vapor into the non-explosive mixture was sufficient to cause explosive combination between the gases when the spark was passed. The hypothesis advanced to account for the observed facts was that carbonic oxide does not unite directly with oxygen at a high temperature, but only indirectly through the intervention of water-vapor present, a molecule of water being decomposed by one of carbonic oxide to form a molecule of carbonic acid and one of free hydrogen, and the latter uniting with the oxygen to re-form a molecule of water, which again undergoes the same cycle of changes, till all the oxygen is transferred to the carbonic oxide:

H_{2}O + CO = H_{2} + CO_{2}

H{2} + O = H{2}O

[Footnote 1: "Report of British Association," 1880, p. 503.]

For such a series of reactions a comparatively few molecules of water would suffice, and the change produced by their alternate reduction and oxidation would come under the old term of "catalytic action," inasmuch as the few water molecules present at the beginning are found in the same state at the completion of the reaction.

The truth of this hypothesis has since been confirmed by experiments I have made on the incomplete combustion of mixtures of carbonic oxide and hydrogen; and on the velocity of explosion of carbonic oxide and oxygen with varying proportions of aqueous vapor. I therefore thought a description of the more convenient methods lately devised as lecture experiments for showing the influence of water on the combustion of carbonic oxide would not be uninteresting to the Section.

A glass tube from 18 inches to 2 feet long, closed at one end, and provided with platinum wires, is bent near its open end so that the shorter arm makes an angle of about 60 deg. with the longer arm. The tube, held by a clamp, is heated in a Bunsen flame, and is then filled with mercury heated to about 130 deg. C. The mixture of gases is then made to displace a portion of the mercury by forcing it through a fine tube, which is connected by a steel cap to the eudiometer of McLeod's gas apparatus, and passes down through the mercury in the shorter arm of the experimental tube. When a sufficient quantity of the gaseous mixture has been collected in the longer arm, some dry phosphoric oxide is introduced in the following way: A small glass tube is heated, packed with the dry powder, and pushed down into the shorter arm of the experimental tube. With a hot glass rod the phosphoric oxide is pushed out at the bottom of the small tube, and passes up into the gaseous mixture in the longer arm. After standing for a few hours in contact with the phosphoric oxide, the gases may be submitted to strong sparks from a Leyden jar without igniting. Care must be taken that none of the oxide comes in contact with the platinum wires, for if any sticks to the wires it becomes heated by the passage of the sparks, and gives off enough water to determine the explosion. In this way I have prepared several specimens of a non-explosive mixture of carbonic oxide and oxygen in the proper proportions to form carbonic acid. Some of these tubes have been submitted without explosion to sparks from a large Leyden jar, to a continuous succession of sparks from a Holtz machine, and to the discharge of a Ruhmkorff's coil, that heated the platinum wires between which it passed to bright redness. Other tubes which withstood the passage of the sparks from a Leyden jar, when submitted to the discharge of the coil, exploded after a few seconds when the platinum wires became red-hot. This I think may probably be attributed to hydrogen, occluded by the platinum, being given off on heating, and forming steam with the oxygen present.

For an easy and striking lecture experiment, I employ a tube open at both ends and bent like a W. The two open arms are short and the platinum wires are fixed at the highest bend. The tube is filled with hot mercury—one of the ends being closed by a caoutchouc stopper for the purpose—and a dry mixture of 5 volumes of air and 2 volumes of carbonic oxide is introduced into the bent tube over the mercury. A little phosphoric oxide is passed up one arm. After a few minutes the gases may be submitted to the spark without exploding. A little water may then be introduced through a pipette into the other arm; and if the spark is passed directly the gases ignite in the wet and not in the dry arm of the tube.

The admixture of the inert nitrogen renders a larger quantity of aqueous vapor necessary for the explosion than when only carbonic oxide and oxygen in proper proportion are present.

* * * * *



COMPOSITION OF BEERS MADE PARTLY FROM RAW GRAIN.

At the present time English brewers are being denounced for substituting properly-prepared maize, rice, and other raw grain for barley malt, and the beers produced partly from such materials are described as being very inferior, and even injurious to health. That such denunciations are altogether unwarranted is evident to all who have paid any attention to the subject, and are acquainted with the chemical changes involved in brewing, and with the composition of the resulting beers. Unfortunately but few comparative analyses have been published of beers made solely from malt and beers made from malt in conjunction with raw grain, and therefore such wild assertions as were recently uttered in the House of Commons have remained unanswered. A German chemist, J. Hanamann, some time since made a series of analyses of beers brewed partly from raw grain, and his results completely controvert the theory that raw grain beers essentially differ in composition from malt beers. Four worts were made by the decoction system of mashing: A entirely from barley malt; B from 60 per cent. of malt and 40 per cent. of maize; C from 60 per cent. of malt and 40 per cent. of rice; and D from 60 per cent of malt and 40 per cent. of pure starch. The analyses of these respective worts gave the following results:

A B C D Sugar............... 4.96 4.08 4.84 4.87 Dextrine............ 6.05 6.83 6.35 6.60 Total extract....... 12.29 12.27 12.30 12.32 Albuminoids......... 0.82 0.78 0.68 0.42 Other substances.... 0.46 0.58 0.43 0.43

It will be seen that these worts vary very little in composition, the chief points of difference being that those made partly from raw grain are more dextrinous and contain less albuminoids than the wort made from malt alone. The process of brewing was then continued as usual, and after fermentation the resulting beers were again analyzed with the following results:

A B C D Alcohol............. 2.71 2.76 2.90 3.19 Sugar............... 1.05 1.12 0.98 0.35 Dextrine............ 4.54 4.31 4.42 4.74 Extract............. 6.59 6.48 6.25 5.91 Albuminoids......... 0.43 0.39 0.33 0.28 Other substances ... 0.57 0.66 0.52 0.54

It will be observed that the beers made partly from raw grain are slightly more alcoholic, but in other respects differ but very little from the pure malt beer, but none of them can in any way be pronounced as really inferior or unwholesome. The beer made partly from maize is, in fact, hardly to be distinguished in chemical composition from that made solely from malt. These worts and beers were brewed upon the German system, but analogous results would undoubtedly be obtained with beers brewed from the like materials on the English system. We hope soon to be in a position to publish some comparative analyses of beers brewed in this country from malt combined with different kinds of raw grain; but the analyses which we have now quoted constitute a sufficient refutation to those who assert that brewers using raw grain are producing an injurious or even an inferior quality of beer.—Brewers' Guardian.

* * * * *



DOUBLE BUTTERCUPS.

Among early summer flowers in open borders few are prettier than the double-flowered kinds of ranunculus of the herbaceous type. Having been established favorites for ages, most of them are familiar to us, and poor indeed is that hardy plant border which does not contain a good healthy tuft of what are termed Fair Maids of France, or Bachelor's Buttons, the doubled flowered variety of R. aconitifolius. The small, pure white rosette-like flowers produced so plentifully, and in such a graceful manner, make it an extremely pretty, and, though common, valuable plant, particularly useful in a cut state. It is one of the kinds shown in the annexed engraving. Of double crowfoots there are three others, the types of which are R. bulbosus, acris, and repens. All these are very pretty, having bright yellow, compact, rosette-like flowers, as perfect in form as that of some of the finest sorts of the Asiatic or Persian ranunculus of the florists. Both the double R. acris and repens are profuse flowerers, but R. bulbosus is not so; it, however, bears much larger flowers than either of the others, and on this account is named R. speciosus. These four plants are indispensable, yielding, as they do, flowers in such abundance and in such long succession. In order to enable them to develop fully they require good culture, a good, deep loamy soil, enriched with well-decayed manure, and if the border be moist, so much the better,'for these ranunculuses delight in a cool, moist soil. Treated liberally in this way, these double buttercups are indeed fine plants.—W. G., in The Garden.



* * * * *



LIGUSTRUM QUIHOUI.

This is a Chinese species, at present little known in this country. It forms a low bush with spreading wiry purplish downy branches, and loose terminal panicles of white flowers. Its peculiar spreading habit, dark green leaves, and abundant flowers render it a desirable acquisition to the shrubbery. It is quite hardy.—The Gardeners' Chronicle.



* * * * *



RAPHIOLEPIS JAPONICA.

This handsome Japanese shrub is not an uncommon plant in greenhouses, in which it is generally known under the garden name of R. ovata. It is, however, perfectly hardy, and it is with the view of making that fact known that we produce the annexed illustration of it, which represents a spray lately sent to us by Messrs. Veitch from their nursery at Coombe Wood, where the plant has withstood the full rigor of our climate for some years past. The Coombe Wood Nursery is not very well sheltered, and the soil is not of the lightest description; the plant may, therefore, be said to have a fair trial out-of-doors. We have also met with it in the open air in other places besides Coombe Wood, and if we remember rightly, Mr. G.F. Wilson has a fine old bush of it on his rockery which abounds with shrubs of a similar character, all apparently at home. This shrub is of low growth, somewhat bushy in habit, and rather sparsely furnished with oval leaves of a leathery texture. It produces its flowers in early summer, and when a good-sized bush, well covered with clusters of white blossoms resembling those of some species of Crataegus, it has a handsome appearance, and, like most other rosaceous shrubs, powerfully fragrant. Those who possess duplicate plants of it would do well to try it in the open in some sheltered spot, and if in a high and dry position so much the better. This species is called also in the gardens by its synonym, R. integerrima There are three other kinds of Raphiolepis in cultivation, viz., R. indica, R. rubra, and R. salicifolia, but only the last named one is generally known. It too is a handsome shrub, readily distinguished by the long, willow-like foliage. Its flowers are much the same as those of R. japonica, but more plentifully produced. We have no instance of its having stood out like its congener, and we doubt if it is so hardy, seeing that it is a Chinese plant. Perhaps some of our readers can enlighten us on the point.—W.G., in The Garden.



* * * * *



RIVINA LAEVIS.

The brilliant little scarlet berries of this plant render it, when well grown, one of the prettiest of ornaments for the hothouse, conservatory, or even for a warm room. It is quite easily managed, stray seeds of it even growing where they fall, and making handsome specimens. For indoor decoration few subjects are more interesting, and a few plants may be so managed as to have them in fruit in succession all the year round. Any kind of soil will answer for this Rivina. Cuttings of it strike freely, but it is easiest obtained from seeds. Either one plant or three may occupy a 6 in. pot, and that is the best size for table decoration. Usually it is best to raise a few plants every year and discard the old stock, but some may be retained for growing into large specimens. These should be cut back before they are started into growth. The berries yield a fine, but fugitive red color. Miller says that he made experiments with the juice for coloring flowers, and succeeded extremely well, thus making the tuberose and the double white narcissus variegated in one night. Of this species there is a variety with yellow berries which are not quite so handsome as the red, though very attractive. R. humilis differs from laevis in having hairy leaves, those of laevis being quite smooth. It also differs in the duller red color of the berries, laevis being much the prettier. Both are natives of the West Indies.—R.I.L., in The Garden.

* * * * *



APPLES IN STORE.

Apples always, whether in barrels or piles, when the temperature is rising so that the surrounding air is warmer than the apples, condense moisture on the surface and become quite moist and sometimes dripping wet, and this has given the common impression that they "sweat," which is not true. As they come from the tree they are plump and solid, full of juice; by keeping, they gradually part with a portion of this moisture, the quantity varying with the temperature and the circulation of air about them, and being much more rapid when first picked than after a short time, and by parting with this moisture they become springy or yielding, and in a better condition to pack closely in barrels; but this moisture never shows on the surface in the form of sweat. In keeping apples, very much depends upon the surroundings; every variation in temperature causes a change in the fruit, and hastens maturity and decay, and we should strive to have as little change as possible, and also have the temperature as low as possible, so the apples do not freeze. Then, some varieties keep much better in open bins than others; for instance, the Greening is one of the best to store in bins. A very good way for storing apples is to have a fruit-room that can be made and kept at from 32 deg. to 28 deg., and the air close and pure, put the apples in slatted boxes, not bins, each box holding about one barrel, and pile them in tiers, so that one box above rests on two below, and only barrel when ready to market; but this is an expensive way, and can only be practiced by those with limited crops of apples, and it is not at all practicable for long keeping, because in this way they lose moisture much more rapidly than when headed close in barrels, and become badly shriveled.

All things considered, there is no way of keeping apples quite so good and practicable as packing in light barrels and storing in cool cellars; the barrel forms a room within a room, and prevents circulation of air and consequent drying and shrinking of the fruit, and also lessens the changes of temperature, and besides more fruit can be packed and stored in a given space than in any other way. The poorest of all ways is the large open bin, and the objections are: too much fruit in contact; too much weight upon the lower fruit; and too much trouble to handle and sort when desirable to market. It was formerly the almost universal custom in Western New York to sort and barrel the apples as fast as picked from the trees, heading up at once and drawing to market or piling in some cool place till the approach of cold weather, and then putting in cellars. By this method it was impossible to prevent leaves, twigs, and other dirt from getting into the bin, and it was difficult to properly sort the fruit, and if well sorted, occasionally an apple, with no visible cause, will entirely and wholly rot soon after packing. Some varieties are more liable to do this than others, but all will to some extent; this occurs within a week or ten days after picking, and, when barreled, these decayed apples are of course in the barrels, and help to decay others. Although packed ever so well and pressed ever so tight, the shrinking of the fresh-picked fruit, soon makes them loose, and nothing is so bad in handling apples as this. Altogether this was a very untidy method of handling apples, and has been entirely abandoned for a better.

The very best method depends a good deal upon the quantity to be handled; if only a few hundred barrels, they can be put in open barrels and stored on the barn floor. Place empty barrels on a log-boat or old sled; take out the upper head and place it in the bottom of the barrel; on picking the apples put them, without sorting, directly into these barrels, and when a load is filled, draw to the barn and place in tiers on end along one side of the floor; when one tier is full lay some strips of boards on top and on these place another tier of barrels; then more boards and another tier; two men can easily place them three tiers high, and an ordinary barn floor will in this way store a good many barrels of apples. Where many hundreds or thousands of barrels are grown, it is a good plan to build houses or sheds in convenient places in the orchard for holding the apples as picked; these are built on posts or stones, about one foot from the ground; floors, sides, and ends should be made of strips about four inches wide and placed one inch apart, and the roof should project well on every side. The apples, as picked, are drawn to these in boxes or barrels and piled carefully on the floors, about three feet deep. Where these houses are not provided, the next best way is to pile the apples, as picked, on clean straw under the trees in the deepest shade to be found.

After lying in any one of these positions about ten days they should be carefully sorted and packed in clean barrels, placing at least two layers on the bottom of the barrels, with stems down; after this fill full, shaking moderately two or three times as the tilling goes on, and, with some sort of press, press the head down, so that the apples shall remain firm and full under all kinds of handling. Apples may be pressed too much as well as too little. If pressed so that many are broken, and badly broken, they will soon get loose and rattle in the barrels, and nothing spoils them sooner than this. What we want is to have them just so they shall be sure to remain firm, and carefully shaking so as to have them well settled together, has as much to do with their remaining firm as the pressing down of the head. After the barrels are filled and headed they should at once be placed on their sides in a barn or shed, or in piles, covered with boards, from sun and rain, or if a fruit-house or cellar is handy they may at once be placed therein; the object should be to keep them as cool and at as even a temperature as possible. In all the operations of handling apples from picking to market, remember that carelessness and harshness always bruise the fruit, and that every bruise detracts much from its keeping and market value; and remember another thing, that "Honesty is the best policy."—J.S. Woodward, in N.Y. Tribune.

* * * * *



ON DETERMINING THE SUN'S DISTANCE BY A NEW METHOD.

By T.S.H. EYTINGE, Cainsville, Canada.

It is well known that the sun's distance has been determined from the velocity of light. It has been found, by terrrestrial experiments, about how fast light travels, and, knowing from certain astronomical phenomena the time light requires to pass from the sun to the earth, we have been able to determine the sun's distance.

There are several methods of determining the velocity of light, but hitherto only two plans have been used to detect the time light occupies in passing from the sun to the earth. This time was first discovered by observations of the satellites of Jupiter. It was found that the interval between the eclipses of these bodies was not always the same—that the eclipses occurred earlier when Jupiter was nearest the earth, and later when he was at his greatest distance. Roemer, a Danish astronomer, first detected the cause of this variation. The second method by which this time has been found is the aberration of stellar light. This refined method was detected by the great English astronomer Bradley.

About two years ago it occurred to me that a third method can be used to solve this important problem. My plan is this: It is well known that many variable stars, such as Algol, [sigma] Librae, U Coronae, and the remarkable variable D.M. + 1.3408 deg., discovered by Mr. E.F. Sawyer, fluctuate at regular intervals. Now, I believe it is possible to determine very accurately the intervals between these changes, and, by noting the change of time in these intervals, when the earth is in different points of its orbit, we get the time light requires to cross that orbit. For, as in the case of the satellites of Jupiter, when the star is "in opposition," the changes will occur earlier than when it is in conjunction or approaching that point. I have recently put this plan to the test, and hope before long to make known the results.

In detecting the changes of variables, I have attempted to substitute, in place of the ordinary eye observations, a very delicate thermopile, which registers the changes in the star's heat. So far as I know, this is the first application of the thermopile to variables.

* * * * *



PROFESSOR HAECKEL ON DARWIN.

In Nature appears a report of the remarkable address given by Professor Haeckel at the recent Eisenach meeting of the German Association of Naturalists on the theories of Darwin, Goethe, and Lamarck. The address is mainly devoted to Darwin and Darwinism, and of both, we need scarcely say, Professor Haeckel has the highest estimate. He said:

"When, five months ago, the sad intelligence reached us by telegraph from England that on April 19 Charles Darwin had concluded his life of rich activity there thrilled with rare unanimity through the whole scientific world the feeling of an irreparable loss. Not only did the innumerable adherents and scholars of the great naturalist lament the decease of the head master who had guided them, but even the most esteemed of his opponents had to confess that one of the most significant and influential spirits of the century had departed. This universal sentiment found its most eloquent expression in the fact that immediately after his death the English newspapers of all parties, and pre-eminently his Conservative opponents, demanded that the burial-place of the deceased should be in the Valhalla of Great Britain, the national Temple of Fame, Westminster Abbey; and there, in point of fact, he found his last resting-place by the side of the kindred-minded Newton. In no country of the world, however, England not excepted, has the reforming doctrine of Darwin met with so much living interest or evoked such a storm of writings, for and against, as in Germany. It is, therefore, only a debt of honor we pay if at this year's assembly of German naturalists and physicians we gratefully call to remembrance the mighty genius who has departed, and bring home to our minds the loftiness of the theory of nature to which he has elevated us. And what place in the world could be more appropriate for rendering this service of thanks than Eisenach, with its Wartburg, this stronghold of free inquiry and free opinion! As in this sacred spot 360 years ago Martin Luther, by his reform of the Church in its head and members, introduced a new era in the history of civilization, so in our days has Charles Darwin, by his reform of the doctrine of development, constrained the whole perception, thought, and volition of mankind into new and higher courses. It is true that personally, both in his character and influence, Darwin has more affinity to the meek and mild Melanchthon than to the powerful and inspired Luther. In the scope and importance, however, of their great work of reformation the two cases were entirely parallel, and in both the success marks a new epoch in the development of the human mind. Consider, first, the irrefragable fact of the unexampled success which Darwin's reform of science has achieved in the short space of 23 years! for never before since the beginning of human science has any new theory penetrated so deeply to the foundation of the whole domain of knowledge or so deeply affected the most cherished personal convictions of individual students; never before has a new theory called forth such vehement opposition and so completely overcome it in such short time. The depicture of the astounding revolution which Darwin has accomplished in the minds of men in their entire view of nature and conception of the world will form an interesting chapter in the future history of the doctrine of development."

Describing a visit which he paid to the late Mr. Darwin in 1866, Professor Haeckel says:

"In Darwin's own carriage, which he had thoughtfully sent for my convenience to the railway station, I drove one sunny morning in October through the graceful, hilly landscape of Kent, which, with the checkered foliage of its woods, with its stretches of purple heath, yellow broom, and evergreen oaks, was arrayed in the fairest autumnal dress. As the carriage drew up in front of Darwin's pleasant country-house, clad in a vesture of ivy and embowered in elms, there stepped out to meet me from the shady porch, overgrown with creeping plants, the great naturalist himself, a tall and venerable figure with the broad shoulders of an Atlas supporting a world of thoughts, his Jupiter-like forehead highly and broadly arched, as in the case of Goethe, and deeply furrowed by the plow of mental labor: his kindly, mild eyes looking forth under the shadow of prominent brows; his amiable mouth surrounded by a copious silver-white beard. The cordial, prepossessing expression of the whole face, the gentle, mild voice, the slow, deliberate utterance, the natural and naive train of ideas which marked his conversation, captivated my whole heart in the first hour of our meeting, just as his great work had formerly, on my first reading it, taken my whole understanding by storm. I fancied a lofty world sage out of Hellenic antiquity—a Socrates or Aristotle—stood alive before me. Our conversation, of course, turned principally on the subject which lay nearest the hearts of both—on the progress and prospects of the history of development. Those prospects at that time—16 years ago—were bad enough, for the highest authorities had for the most part set themselves against the new doctrines. With touching modesty, Darwin said that his whole work was but a weak attempt to explain in a natural way the origin of animal and vegetable species, and that he should not live to see any noteworthy success following the experiment, the mountain of opposing prejudice being so high. He thought I had greatly overestimated his small merit, and that the high praise I had bestowed on it in my 'General Morphology' was far too exaggerated.

"We next came to speak of the numerous and violent attacks on his work, which were then in the ascendant. In the case of many of those pitiful botches one was, in fact, quite at a loss whether more to lament the want of understanding and judgment they showed or to give the greater vent to the indignation one could not but feel at the arrogance and presumption of those miserable scribblers who pooh-poohed Darwin's ideas and bespattered his character. I had then, as on later occasions, repeatedly expressed my just scorn of the contemptible clan. Darwin smiled at this, and endeavored to calm me with the words, 'My dear young friend, believe me one must have compassion and forbearance with such poor creatures; the stream of truth they can only hold back for a passing instant, but never permanently stem.' In my later visits to Down in 1876 and 1879 I had the pleasure of being able to relate to Darwin the mighty progress which in the past intervals his doctrines had made in Germany. Their decisive outburst happened more rapidly and more completely here with us than in England, for the reason chiefly that the power of social and religious prejudice is not nearly so strong here as among our cousins across the Channel, who are better placed than ourselves. Darwin was perfectly well aware of all this; though his knowledge of our language and literature was defective, as he often complained, yet he had the highest appreciation of our intellectual treasures."

* * * * *

A catalogue, containing brief notices of many important scientific papers heretofore published in the SUPPLEMENT, may be had gratis at this office.

* * * * *



THE SCIENTIFIC AMERICAN SUPPLEMENT.

PUBLISHED WEEKLY.

TERMS OF SUBSCRIPTION, $5 A YEAR.

Sent by mail, postage prepaid, to subscribers in any part of the United States or Canada. Six dollars a year, sent, prepaid, to any foreign country.

All the back numbers of THE SUPPLEMENT, from the commencement, January 1, 1876, can be had. Price, 10 cents each.

All the back volumes of THE SUPPLEMENT can likewise be supplied. Two volumes are issued yearly. Price of each volume, $2.50, stitched in paper, or $3.50, bound in stiff covers.

COMBINED RATES—One copy of SCIENTIFIC AMERICAN and one copy of SCIENTIFIC AMERICAN SUPPLEMENT, one year, postpaid, $7.00.

A liberal discount to booksellers, news agents, and canvassers.

MUNN & CO., PUBLISHERS,

261 BROADWAY, NEW YORK, N. Y.

* * * * *



PATENTS.

In connection with the SCIENTIFIC AMERICAN, Messrs. MUNN & Co. are Solicitors of American and Foreign Patents, have had 35 years' experience, and now have the largest establishment in the world. Patents are obtained on the best terms.

A special notice is made in the SCIENTIFIC AMERICAN of all Inventions patented through this Agency, with the name and residence of the Patentee. By the immense circulation thus given, public attention is directed to the merits of the new patent, and sales or introduction often easily effected.

Any person who has made a new discovery or invention can ascertain, free of charge, whether a patent can probably be obtained, by writing to MUNN & Co.

We also send free our Hand Book about the Patent Laws, Patents, Caveats. Trade Marks, their costs, and how procured, with hints for procuring advances on inventions. Address

MUNN & CO., 261 BROADWAY, NEW YORK.

Branch Office, cor. F and 7th Sts., Washington, D. C.

THE END

Previous Part     1  2  3
Home - Random Browse