p-books.com
Scientific American Supplement, No. 286 - June 25, 1881
Author: Various
Previous Part     1  2
Home - Random Browse

2. Study of the qualities of materials is a prominent part of lessons on objects. Such study is really the study of physical science, but with objects such as are usually selected is a very difficult part to give to young children. Ask the student who has taken a course in chemistry whether the study of the qualities of metals and their alloys is easy work. Ask him how much can readily be shown, and how much must be taken on authority. Have him tell you how much or how little the thing itself suggests, and how much must he memorized from the mere book statement and with difficulty. Study of materials is good to a certain extent, but it is often carried much too far.

Consider a conversational lesson on some animal. Lessons are sometimes given on cats. As an element in a reading lesson—to arouse interest—to hold the attention—to secure correct emphasis and inflection—to make sure of the reading being good: such work is appropriate. But let us see what the effect upon the pupil is as regards the knowledge he gains of the cat, and the effect upon his habits of thought and study. The student gives some statement as to the appearance—the size—or some act of his cat. It is usually an imperfect statement drawn from the imperfect memory of an imperfect observation. And the teacher, having only a general knowledge of the habits of cats, can correct in only a general way. Thus habits of faulty and incorrect observation and inaccurate memory are fastened upon the child. It is no less by the correction of the false than by the presenting of the true, that we educate properly.

Besides this there is the fact that traits, habits, and peculiarities of animals are not always manifested when we wish them to be. Suppose a teacher asks a child to notice the way in which a dog drinks, for example; the child may have to wait until long after all the associated facts, the reasons why this thing was to be observed—the lesson as a whole of which this formed a part—have all grown dim in the memory, before the chance for the observation occurs.

Pictures are less valuable as educational aids than objects; at best they are but partially and imperfectly concrete. The study of pictures tends to cultivate the imagination and taste, but observation and judgment are but little exercised.

A comparison of the kind of knowledge gained in either of the above ways with that gained by a study of science as such, will make some of the advantages of the latter evident. An act of complete knowledge consists in the identifying of an attribute with a subject. Attributes of quality—of condition—of relation, may be gained from lessons in which objects or pictures are used. Attributes of action which are unregulated by the observer may be learned from the study of animals. But very little of actions and changes which can be made to take place under specified conditions, and with uniformity of result, can be learned until physical science is drawn upon.

And yet consider the importance of such study. Changes around him appeal most strongly to the child. "Why does this thing do as it does?" is more frequent than "Why is this thing as it is?" He sees changes of place, of form, of size, of composition, taking place; his curiosity is aroused; and he is ready to study with avidity, and in a systematic manner, the changes which his teacher may present to him. Consider the peculiarities belonging to the study of changes of any sort. The interest is held, for the mind is constantly gaining the new. The attention cannot be divided—all parts of the change, all phases of the action, must be known, and to be known must be observed; while in other forms of lessons the attention may be diverted for a moment to return to the consideration of exactly what was being observed before. It goes without saying that in one case quick and accurate observation, a retentive memory, and the association of causes and effects follow, and that in the other they do not.

I advocate, therefore, the teaching of physical science in our schools—in all our schools. Physical science taught by the experimental method.

An experiment has been defined as a question put to Nature, a question asked in things rather than in words, and so conditioned that no uncertain answer can be given. Nature says that all matter gravitates, not in words, but in the swing of planets around the sun, and in the leap of the avalanche. And men have devised ingenious machines through which Nature may tell us the invariable laws of gravitation, and give some hint as to why it is true.

There are two kinds of experiments, and two corresponding kinds of investigators.

I. In original investigation there are the following elements:

1. The careful determination of all the conditions under which the experiment takes place.

2. The observation of exactly what happens, with a painstaking elimination of all previous notions as to what ought to happen.

3. The change of conditions, one at a time, with a comparison of the results obtained with the changes made, in order to determine that each condition has been given just its appropriate weight in the experiment.

4. The classification and explanation of the result.

5. The extension of the knowledge gained by turning it to investigations suggested by what has already been learned.

6. The practical application of the knowledge gained.

II. In ordinary experiments for educational purposes the experimenter follows in a general way in the footsteps of the original investigator. There are the following elements to be considered:

1. The arrangement of conditions in general imitation of the original investigator. This arrangement needs only to be general. For example, if an original investigation were undertaken to determine the composition of a metallic oxide, the metal and the oxygen would both be carefully saved to be measured and weighed and fully tested. The ordinary experiment would be considered successful if oxygen and the metal were shown to result.

2. The careful consideration of what should happen.

3 The determination that the expected either does or does not happen, with examination of reasons and elimination of disturbing causes in the latter case.

4. The accepting as true of the classification and explanation already given. Theories, explanations, and laws are thus accepted every day by minds which could never have originated either them or the experiments from which they were derived.

The method of original investigation, strictly considered, presents many difficulties. A long course of preliminary training—a thorough knowledge of what has been done in a given field already—a quick imagination—a genius for devising forms of apparatus which will enable him to work well under particular conditions in the most simple and effective way—the faculty of suspending judgment, and of seeing what happens, all that happens, and just how it happens—patience—caution—courage—quick judgment when a completed experiment presses for an explanation—these are some of the characteristics which must belong to the original worker.

Were we all capable of doing such work there would be these advantages, among others, of studying for ourselves:

1. What we find out for ourselves we remember longer and recall more readily than what we acquire in any other way. This advantage holds true whether the facts learned are entirely new or only new to us. Almost every man whose life has been spent in study has a store of facts which he discovered, and on which he built hopes of future greatness until he found out later that they were old to the knowledge of the world he lived in. And these things are among those which will remain longest in his memory.

2. Associated facts would be learned in studying in this way which would remain unknown otherwise.

But all the advantages would be associated with disadvantages too. Long periods of time would have to be given for comparatively small results. The history of science is full of instances in which years were spent in the elaboration of some law, or principle, or theory which the school boy of to-day learns in an hour and recites in a breath. Why does water rise in a pump? Do all bodies, large and small, fall equally fast? The principles which answer and explain such questions can be made so clear and evident to the mind of a pupil that he would almost fancy they must have been known from the first instead of having waited for the hard, earnest labor of intellectual giants. And science has gone on, and for us and for our pupils would still go on, only as accompanied with numerous mistakes and disappointments.

What method shall we adopt in the teaching of science? It must differ according to the age and capacity of the pupils. An excellent modification of the method of original investigation may be arranged as follows:

The children are put in possession of all facts relating to conditions, the teacher explaining them as much as may be necessary. The experiment is performed, the pupils being required to observe exactly what takes place, the experiments selected being of such a nature that any previous judgment as to what ought to occur is as nearly impossible as may be. We predict from knowledge, real or supposed, of facts which are associated in our minds with any new subject under consideration. Children often know in a general, vague, and indefinite way that which, for the sake of a full and systematic knowledge, we may desire them to study. What they know will unconsciously modify their expectations, and their expectations in turn may modify their observations. We are apt to believe that happens which we expect will happen. There ought to be no difficulty, however, in finding simple and appropriate experiments with which the child is entirely unacquainted, and in which anything beyond the wildest guess work is, for him, impossible. The principal use which can be made of this method is in the mere observation of what takes place. Nothing which the child notices correctly need be rejected, no matter how far removed from the chief event on the object of the experiment. Care that the pupil shall see all, and separate the essential from the accidental, is all that is necessary.

But the original investigator assigns reasons, and with care the children may be allowed to attempt that. This, however, should not be carried far; incorrect explanations should be criticised; and the class should at length be given all the elements of the correct explanation which they have not determined for themselves. Later, pupils should be encouraged to name related phenomena, to mention things which they have seen happen which are due to associated causes, and to suggest variations for the experiment and tests for its explanation. Good results may be made to follow this kind of work even with very young pupils. A child grows in mental strength by using the powers he has, and mistakes seen to be such are not only steps toward a correct view of the subject under consideration, but are steps toward that habit of mind which spontaneously presents correct views at once in study which comes later in life.

Another method is this: The pupil may know what is expected to happen, as well as the conditions given, and held responsible for an observation of what does happen and a comparison of what he really observes with what he expects to observe. Explanations are usually given a class, often in books with which they are furnished, instead of being drawn from them, in whole or in part, by questioning, when physical science is studied in this way. Indeed, this method is a necessity when text books are used, unless experiments from some outside source are introduced.

Who shall perform the experiments? With young pupils everywhere, and in most of our common, and even in many of our graded schools, the experiments must be performed by the teacher. With young pupils the time is too limited, and the responsibility and necessary care too great to permit of any other plan being practical. In many of our schools the small supply of apparatus renders this necessary even with larger pupils. Added to the reasons already given is the important one that in no other way—by no other plan—can the teacher be as readily sure that his pupils observe and reason fully for themselves. In this normal school a course in physics, in which the experiments are all performed in the class room by the teacher, is followed by a course in chemistry, in which the members of the class perform the experiments for themselves in the laboratory. And, notwithstanding the age, maturity, and previous observation of the pupils, a great deal must be done both in the laboratory and in the recitation room to be sure that all that happens is seen—that the purpose is clearly held in the mind—that the reason is fully understood.

With older pupils and greater facilities, however, the experiments should be performed by the pupils themselves. Constant watchfulness is necessary, it is true, to insure to the pupil the full educational value of the experiment. With this watchfulness it can be done, and the advantages are numerous. Among them are:

1. The learning of the use and care of apparatus.

2. The learning of methods of actual construction, from materials at hand, of some of the simpler kinds of apparatus.

3. The learning of the importance of careful preparation. An experiment may be performed in a few minutes before a class which has taken an hour or more of time in its preparation. The pupil fully appreciates its importance, and is in the best condition to remember it only when he has had a part of the hard work attending that preparation. Again, conditions under which an experiment is successfully performed are often not appreciated when merely stated in words. "To prepare hydrogen gas, pass a thistle tube and a delivery tube through a cork which fit tightly in the neck of a bottle," etc., is simple enough. Let a pupil try with a cork which does not fit tightly and he will never forget that condition.

4. The learning of the importance of following directions. Chemistry, especially, is full of those cases where this means everything. Sometimes, not often in experiments performed in school, however, it may mean even life or death.

The time for experiments should be carefully considered. When performed by the teacher they should be taken up during the recitation:

1. If used as a foundation to build upon, at the beginning of the lesson.

2. If used as a summary, at the close.

3. They should be closely connected with the points which they illustrate.

4. When very short, or when so difficult as to demand the whole attention of the teacher, they may be given and afterward discussed. If long or easy, they may be discussed while the work is going on. Changes which take place slowly, as those which are brought about by the gradual action of heat, for instance, are best taken up in this latter way.

5. Exceptions may be necessary, as when experiments which demand special preparation immediately before they are presented are given when the recitation begins, or cases in which experiments are kept until near the close of a recitation, when the teacher finds that attention flags and the lesson seems to have lost its interest to the pupils as soon as the experiments have been given.

When performed by the pupils themselves, experiments should come before the recitation as a part of the preparation for the work of the class room.

Even in those cases in which the teacher performs the work, opportunity should be given, from time to time, for the performing of the experiment by the pupils themselves. This can be done in several ways. During the course in physics here I am in the habit of leaving apparatus on the table in my room for at least one day, often for a longer time, and of giving permission to my class to perform the experiments for themselves when their time permits and the nature of the experiment makes it an advantage to get a nearer view than was possible in the class work. I leave it to them to decide when to perform the experiments, or whether it is to their advantage to take the time to perform them at all. I make no attempt to watch either pupils or apparatus, although I would often assist or explain at intermissions or during the afternoon. The apparatus was largely used, and the effect on recitations was a good one. For advanced pupils, and those who can be fully trusted, the plan is a good one. The only question is the safety of the apparatus; each teacher can decide for himself regarding the advisability of the plan for his own school.

With smaller pupils their own safety may render it best to keep apparatus out of their hands, except under the immediate direction of the teacher. With all pupils that is, doubtless, the best plan where chemicals are concerned.

Another method is to allow pupils to assist the teacher in the preparation of experiments, to call occasionally upon members of the class to come forward and give the experiment in the place of the teacher, and to encourage home work relating to experiments. This latter is often spontaneous on the part of older pupils, and can be brought about with the smaller ones by the use of a little tact; many of the toys of the present day have some scientific principle at bottom; let the teacher find out what toys his young pupils have, and encourage them to use them in a scientific way.

In whatever ways experiments be used, the class should be made to consider the following elements as important in every case:

1. The purpose of the experiment. The same experiment may be performed at one time for one purpose, at another time for another. The purpose intended should be made the prominent thing, all others being subordinated to it. Many chemical reactions, for instance, can be made to yield either one of two or more substances for study or examination, or use, while it may be the purpose of the experiment to close only one of them.

2 The apparatus. All elements should be considered. The necessary should be separated from that which may vary. In cases where the various parts must have some definite relation to the others as regards size or position, all that should be considered with care. In complex apparatus the exact office of each part should be understood.

3. A clear understanding of what happens. To this I have already referred.

4. Why it happens.

5. In what other way it might be made to happen. In chemistry almost every substance can be prepared in several different ways. The common method is in most cases made so by some consideration of convenience, cheapness, or safety. Often only one method is considered in one place in a text book. In a review, however, several methods can be associated together. Tests, uses, etc., will vary, too, and should be studied with that fact in view. In physics phenomena illustrating a given principle can usually be made to take place in several different ways. Often very simple apparatus will do to illustrate some fact for which complex and costly apparatus would be convenient. In such case the study of the experiment with that fact in view becomes important to us who need to simplify apparatus as much as possible.

6. Special precautions which may be necessary. Some experiments always work well, even in the hands of those not used to the work. Others are successful—sometimes safe, even—only when the greatest care is taken. Substances are used constantly in work in chemistry which are deadly poisons, others which are gaseous and will pass through the smallest holes. In physics the experiments usually present fewer difficulties of this sort. But special care is necessary to complete success here.

7. Other things shown by the experiment. While the main object should be kept in most prominent view in all experimental work, the fullest educational value will come only when all that can be learned by the use of an experiment is carefully considered.

In selecting just the work to be taken up with a given class of children, attention must be paid to the selection of the appropriate matter to be presented and the well adapted method of presenting it. The following points should be carefully considered:

1. The matter must be adapted to the capacity of the child. This must be true both as regards the quality and the quantity. The tendency will be to teach too much when the matter presented is entirely new, but too little in many cases where the pupil already knows the subject in a general way. Matter is valuable only when given slowly enough to permit of its being fully understood and memorized, while on the other hand method is valuable only when it secures the development of attention and the various faculties of the child's mind by presenting a sufficient amount of the new.

2. The work must be based on what is already known. This, one of the best known of the principles of teaching, is of at least as great importance in physical science as in any other department of knowledge. It seems to me in many cases to be more important here than elsewhere. It is not necessary to reach each point by passing over every other point usually considered. Lessons in electricity or sound, for instance, can be given to children who have done nothing with other parts of science. But a natural beginning must be made, and an orderly sequence of lessons adopted. Children will not do what adults would find almost impossible in covering gaps between lessons.

Science may be compared to a great temple. Pillars, each built of many curiously joined stones, standing at the very entrance, represent the departments of science so far as man has studied them. We need not dig down and study the foundations with the children; we need not study every pillar nor choose any particular one rather than some other; but we must learn something of every stone—of each great fact—in the pillar we select, be it ever so little. The original investigator climbs to stones never before reached, or boldly ventures away into the dim recesses beyond the entrance to bring back hints of what may be known and believed a hundred years hence, perhaps. The exact investigator measures each stone. Patiently and toilsomely scientific men examine them with glass and reagent. We need not do this, but we must omit none of the stones.

3. The work must be continuous. To continue the figure, the stones must be considered in some regular order. One lesson in electricity, one in sound, then one in some other department is injurious. We remember best by associated facts, and, while with the child this is less so than with the man, one great object of this work is to teach him to remember in that way.

4. Experiments should never be performed for mere show. Of two experiments which illustrate a fact equally well it is often best to select the most striking and brilliant one. The attention and interest of the child will be gained in this way when they would not be to so great an extent in any other. The point of the experiment, however, should never be lost sight of in attention to the merely wonderful in it.

With older pupils, and especially with those who use books for themselves and perform the experiments there considered, the fact that experiments demand work, downright hard work, with care, and patience, and perseverance, and courage, cannot be kept too prominently before them.

5. Every lesson should have a definite object. Not the general value of the experiment, but some one thing which it shows should be the object considered.

6. Each experiment should be associated with some truth expressed in words. The experiment should be remembered in connection with a definite statement in each case. The memory of either the experiment, or the principle apart from the experiment, is a species of half knowledge which should be avoided. An unillustrated principle must, when the necessity arises, be stored in the memory; and in the systematic study of books this necessity will often come. But we should never crowd this abstract work on the memory unassisted by the suggestive concrete, when the concrete aid is possible.

7. All that is taught should be true. It is not necessary to attempt to exhaust a subject, nor to attempt to teach minute details regarding it to the pupils in our schools, but it is necessary that every statement given to the pupil to be learned and remembered should contain no element of falsehood.

The student in mathematics experiences a feeling of growing strength and power when he finds, in algebra, that the formula he used in arithmetic in extracting a square root has grown in importance by leading indirectly to a theorem of which it is only one particular case—a theorem with a more definite proof, and a larger capability for use than he had thought possible. When he finds a still simpler proof for the binomial theorem in his study of the calculus, his feeling of increasing power and the desire for still greater results deepens and intensifies. Were he to find, on the contrary, that from a false notion of the means to be used in making a thing simple, his teacher in arithmetic had taught him what is false, we should approve his feeling of disgust and disappointment. Early impressions are the most lasting, and the hardest part of school work for the teacher is the unteaching of false ideas, and the correcting of imperfectly formed and partially understood ideas. I took a case from mathematics, the exact science, to illustrate this point. But I must not neglect to notice the difference between that subject and physical science. The latter consists of theories, hypotheses, and so-called laws, supported by observed facts. The facts remain, but time has overthrown many of the hypotheses and theories, and it will doubtless overthrow more and give us something better and truer in their place. While a careful distinction between what is known and what is believed is necessary, I should always class the teaching of accepted theories and hypotheses with the teaching of the true.

But teachers, with more of imagination than good sense, teach distinctions which do not exist, generalizations which do not generalize, and do incalculable mischief by so doing.

8. Experimental work should be thoroughly honest as to conditions and results. If an experiment is not the success you expected it would be, say so honestly, and if you know why, explain it. The pupil should be taught to know just what is, theory or expectation to the contrary notwithstanding. Discoveries in physical science have often originated in a search for the reason for some unexpected thing.

The relation of the study of science to books on science should be considered. For the work done with pupils before they are given books to use for themselves, any attempt to follow a text book is to be deplored. The study of the properties of matter, for instance, would be a fearful and wonderful thing to set a class of little ones at as a beginning in scientific work. Just what matter, and force, and molecules, and atoms are may be well enough for the student who is old enough to begin to use a book, but they would be but dry husks to a younger child. Many of the careful classifications and analyses of topics in text books had far better be used as summaries than in any other way; and a definition is better when the pupil knows it is true than when he is about to find out whether it is or not.

An ideal course in science would be one in which nothing should be learned but that found out by the observation of the pupil himself under the guidance of the teacher, necessary terms being given, but only when the thing to be named had been considered, and the mind demanded the term because of a felt need. Practically such a method is impossible in its fullest sense, but a closer approach to it will be an advantage.

Among the numerous good results which will follow the study of physical science are the following:

1. The cultivation of all the faculties of the child in a natural order, thus making him grow into a ready, quick, and observing man. Education in schools is too often shaped so as to repress instead of cultivate the instinctive desire for the knowledge of things which is found in every child.

2. The mechanical skill which comes from the preparation and use of apparatus.

3. The ability to follow directions.

4. The belief in stated scientific facts, the understanding of descriptions, diagrams, etc.

5. The habitual scientific use of events which happen around us.

6. The study of the old to find the new. The principle of the telephone, for instance, is as old as spoken language. The mere[1] pulses in the air—carrying all the characteristics of what you say—may set in vibration either the drum of my ear, or a disk of metal. How simple—and how simple all true science is—when we understand it.

[Transcribers note 1: corrected from 'more']

8. The cultivation of the scientific judgment, and the inventive powers of the mind. One great original investigator, made such by the direction given his mind in one of our common schools, would be cheaply bought at the price of all that the study of science in our schools will cost for the next quarter of a century.

8. Honesty. If there is a study whose every tendency is more in the direction of honesty and truthfulness—both with ourselves and with others—than is the study of experimental science, I do not know what it is.

Physical science, then, will help in making men and women out of our boys and girls. It is worthy of a fair, earnest trial everywhere.

A few minutes each day in which a class or a school study science in some of the ways I have indicated will give a knowledge at the end of a term or a year of no mean value. The time thus spent will have rested the pupils from their books, to which they will return refreshed, and instead of being time lost from other study the work will have been made enough more earnest and intense to make it again.

Apparatus for illustrating many of the ordinary facts of physics can be devised from materials always at hand. Many more can be made by any one skilled in the use of tools. In chemistry, the simplicity of the apparatus, and comparative cheapness of ordinary chemicals, make the use of a large number of beautiful and instructive experiments both easy and cheap.

A nation is what its trades and manufactures—its inventions and discoveries—make it; and these depend on its trained scientific men. Boys become men. Their growing minds are waiting for what I urge you to offer. Science has never advanced without carrying practical civilization with it—but it has never truly advanced save by the use of the experimental method. And it never will.

Let us then look forward to the time when our boys and young men—our girls and young women—shall extend the boundaries of human knowledge by its use, fitted so to do by what we may have done for them.

* * * * *



GEOGRAPHICAL SOCIETY OF THE PACIFIC.

This society is a recent organization, the objects of which are to encourage geographical exploration and discovery; to investigate and disseminate geographical information by discussion, lectures, and publications; to establish in this, the chief maritime city of the Western States, for the benefit of commerce, navigation, and the industrial and material interests of the Pacific slope, a place where the means will be afforded of obtaining accurate information not only of the countries bordering on the Pacific ocean, but of every part of the habitable globe; to accumulate a library of the best books on geography, history, and statistics; to make a collection of the most recent maps and charts—especially those which relate to the Pacific coast, the islands of the Pacific and the Pacific ocean—and to enter into correspondence with scientific and learned societies whose objects include or sympathize with geography.

The society will publish a bulletin and an annual journal, which will interchange with geographical and other societies. Monthly meetings are to be held, at which original papers will be read or lectures be given; and to which, as well as to the entertainments to distinguished travelers, to the conversazioni, and to the informal evenings, the fellows of the society will have the privilege of introducing their friends. The initiation fee to the society is $10; monthly dues $1; life fellowship $100.

At a meeting held at the Palace Hotel on the 12th May, the following gentlemen were elected for the ensuing year: President, Geo. Davidson; Vice-Presidents, Hon. Ogden Hoffman, Wm. Lane Booker, H.B.M. Consul, and John R. Jarboe; Foreign Corresponding Sec., Francis Berton; Home Cor. Sec., James P. Cox; Treas., Gen. C. I. Hutchinson; Sec'y, C. Mitchell Grant, F.R.G.S. The council is composed of the following: Hon. Joseph W. Winans, Hon. J.F. Sullivan, Ralph C. Harrison, A.S. Hallidie, Thos. E. Stevin, F.A.G.S., W.W. Crane, Jr., W.J. Shaw, C.P. Murphy, Thos. Brice, Edward L.G. Steele, Gerrit L. Lansing, Joseph D. Redding. The Trustees are Geo. Davidson, Wm. Lane Booker, Hon. Jno. S. Hager, Geo. Chismore, M.D., Selim Franklin.

* * * * *



THE BEHRING'S STRAITS CURRENTS.

It will be remembered that a short time since we mentioned the fact that W.H. Dall, of the U. S. Coast Survey, who has passed a number of years in Alaskan waters, on Coast Survey duty, denied the existence of any branch of the Kuro Shiwo, or Japanese warm stream, in Behring's Straits. That is, he failed to find evidence of the existence of any such current, although he had made careful observations. At the islands in Behring's Straits, his vessel had sailed in opposite directions with ebb and flood tide, and he thought the only currents there were tidal in their nature. The existence or non-existence of this current is an important point in Arctic research on this side of the continent.

At the last meeting of the Academy of Sciences, Prof. Davidson, of the U. S. Coast Survey, author of the "Alaska Coast Pilot," refuted Dr. Dall's opinion of the non-existence of a branch of the Kuro Shiwo, or Japanese warm stream, from the north Pacific into the Arctic Ocean, through Behring's Straits. He said that in 1857 he gave to the Academy his own observations, and recently he had conferred with Capt. C.L. Hooper, who commanded the U. S. steamer Thomas Corwin, employed as a revenue steam cruiser in the Arctic and around the coast of Alaska. Capt. Hooper confirms the opinions of all previous navigators, every one of which, except Dr. Dall, say that a branch of this warm stream passed northward into the Arctic through Behring's Strait. It is partly deflected by St. Lawrence Island, and closely follows the coast on the Alaskan side, while a cold current comes out south, past East Cape in Siberia, skirting the Asiatic shore past Kamschatka, and thence continues down the coast of China. He said ice often extended several miles seaward, from East Cape on the Asiatic side of Behring Strait, making what seamen call a false cape, and indicating cold water, while no such formation makes off on the American side, where the water is 12 degrees warmer than on the Asiatic shore off the Diomede islands, situated in the middle of Behring's Strait, the current varies in intensity according to the wind.

Frequently it is almost nothing for several days, when after a series of southerly winds the shallow Arctic basin has been filled, under a heavy pressure, with an unusual volume of water, and a sudden change to northerly winds, makes even a small current setting southward for a few days, just as at times the surface currents set out our Golden Gate continuously for 24 and 48 hours, as shown by the United States Coast Survey tide gauges. Whalers report that the incoming water then flows in, under the temporary outflowing stream.

Old trees, of a variety known to grow in tropical Japan, are floated into the Arctic basin as far as past Point Barrow, on the American side, but none are found on the Asiatic side, or near Wrangell Land, where a cold stream exists, and ice remains late in the season. On the northern side of the Aleutian islands are found cocoanut husks and other tropical productions stranded along the beaches. The American coast of Alaska has a much warmer climate than the Asiatic coast of Siberia, and the American timber line extends very far north. The ice opens early in the season on the American side, and invariably late on the Asiatic.

Capt. C. L. Hooper says that when just north of Behring's Strait, off the American coast, in the Arctic basin, the U.S. steamer Thomas Corwin, when becalmed for 24 hours, drifted 40 miles to the northward. From all these, and other facts, and the unanimous testimony of American whalemen, who have for years spent many months annually in the Arctic, and from his own observations, he argued that a branch of the Kuro-Shiwo or Japanese warm stream, unquestionably runs northward through Behring's Strait into the Arctic basin along the northwestern coast of Alaska.

Prof. Davidson then called to mind the testimony in regard to the existence of Plover Island, between Herald Island and Wrangell Land, which he said was first made public through this academy. The evidence of Capts. Williams and Thomas Long were recited and highly praised. One of the officers of Admiral Rodgers' expedition climbed to near the top of Herald Island, at a time of great refraction, when probably a false horizon existed, and hence did not see Plover Island, although Wrangell Land was in sight.

Prof. Davidson thinks all the authorities are against Dr. Dall, who attributes the warm current he observed on the American coast to water from the Yukon River and to the large expanse of shallow water exposed to the sun's rays. As Dall's observations only covered a few days of possibly exceptional weather, and the whalers and Captain Hooper's cover vastly longer periods, and whalers all say it is a pretty hard thing to beat southward through Behring's Strait, owing to the northerly current setting into the Arctic, we are forced to the conclusion that Dr. Dall has mistaken the exception for the rule, and his conclusions are therefore erroneous. When, in 1824, Wrangell went north, he, like others, always found broken ice and considerable open water. In 1867, when Capt. Thomas Long made his memorable survey of the coast of Wrangell Land, the season was an exceptionally open one, and in California we had heavy rains, extending into July.

* * * * *



EXPERIMENTAL GEOLOGY.

ARTIFICIAL PRODUCTION OF CALCAREOUS PISOLITES AND OOLITES.

Mr. Stanislas Meunier communicates to Le Nature an account of some interesting specimens of globular calcareous matter, resembling pisolites or peastones both in appearance and structure, which were accidentally formed as follows: The Northern Railway Company, France, desiring to purify some calciferous water designed for use in steam boilers, hit upon the ingenious expedient of treating it with lime water whose concentration was calculated exactly from the amount of lime held in the liquid to be purified. The liquids were mixed in a vast reservoir, to which they were led by parallel pipes, and by which they were given a rapid eddying motion. The transformation of the bicarbonate into neutral carbonate of lime being thus effected with the accompaniment of a circling motion, the insoluble salt which precipitated, instead of being deposited in an amorphous state, hardened into globules, the sizes of which were strictly regulated by the velocity of the currents. Those that have been formed at one and the same operation are uniform, but those formed at different times vary greatly—their diameters varying by at least one millimeter to one and a half centimeters. The surface of the smaller globules is smooth, but that of the larger ones is rough. Even by the naked eye, it may be seen that both the large and small globules are formed of regularly superposed concentric layers. If an extremely thin section be made through one of them it is found that the number of layers is very great and that they are remarkably regular (A). By the microscope, it has been ascertained that each layer is about 0.007 of a millimeter in thickness.

On observing it under polarized light the calcareous substance is discovered to be everywhere crystallized, and this suggests the question whether the carbonate has here taken the form of aragonite or of calcite. Examination has shown it to be the latter. The density of the globules (2.58) is similar to that of ordinary varieties of calcite. It is probable that if the operation were to take place under the influence of heat, under the conditions above mentioned, aragonite would be formed. It is hardly necessary to dwell upon the possible geological applications of this mode of forming calcareous oolites and pisolites.

ON CRYSTALS OF ANHYDROUS LIME.

Some time ago it was discovered that some limestone, which had been submitted for eighteen months to a heat of nearly 1,000 degrees in the smelting furnaces of Leroy-Descloges (France), had given rise to perfectly crystallized anhydrous lime. Figure C shows three of these crystals magnified 300 diameters. It will be noticed that they have a striking analogy with grains of common salt. They are, in fact, cubes (often imperfect), but do not polarize light, as a substance of the first crystalline system should. However, it is rarely the case that the crystals do not have some action on light. Most usually, when the two Nicol prisms are crossed so as to cause extinction, the crystals present the appearance shown at D. That is to say, while the central portion is totally inactive there are seen on the margins zones which greatly brighten the light.



A and B.—Calcareous Pisolites and Oolites produced artificially. A.—External aspect and section of a Pisolite. B.—Details of internal structure as seen by the microscope.

C and D.—Crystals of anhydrous Lime obtained artificially. C.—Crystals seen under the microscope in the natural light. D.—Crystals seen under the microscope in polarized light.

The phenomenon is explained by the slow carbonization of the anhydrous lime under the influence of the air; the external layers passing to the state of carbonate of lime or Iceland spar, which, as well known, has great influence on polarized light. This transformation, which takes place without disturbing the crystalline state, does not lead to any general modification of the form of the crystals, and the final product of carbonization is a cubic form known in mineralogical language as epigene. As the molecule of spar is entirely different in form from the molecule of lime, the form of the crystal is not absolutely preserved, and there are observed on the edges of the epigene crystal certain grooves which correspond with a loss of substance. These grooves are quite visible, for example, on the crystal to the left in Fig. D.

Up to the present time anhydrous lime has been known only in an amorphous state. The experiment which has produced it in the form noted above would doubtless give rise to crystallized states of other earthy oxides likewise, and even of alkalino-earthy oxides.



COCCIDAE.

[Footnote: A paper recently read before the California Academy of Sciences.]

By DR. H. BEHR.

With the exception of Hymenoptera there is no group of insects that interfere in so many ways in good and evil with our own interests, as that group of Homoptera called Coccidae.

But while the Hymenoptera command our respect by an intellect that approaches the human, the Coccus tribe possesses only the lowest kind of instinct, and its females even pass the greater part of their lives in a mere vegetation state, without the power of locomotion or perception, like a plant, exhibiting only organs of assimilation and reproduction.

But strange to say, these two groups, otherwise so very dissimilar, exhibit again a resemblance in their product. Both produce honey and wax.

It is true, the honey of this tribe is almost exclusively used by the ants. But I have tasted the honey-like secretion of an Australian lecanium living; on the leaves of Eucalyptus dumosus; and the manna mentioned in Scripture is considered the secretion of Coccus manniparus (Ehrenberg) that feeds on a tamarix, and whose product is still used by the native tribes round Mount Sinai.

Several species of Coccides are used for the production of wax; many more, among which the Cochenill, for dyes.

All these substances can be obtained in other ways, even the Cochenill is to a great extent superseded by aniline dyes, but in regard to one production, indispensable to a great extent, we are entirely dependent on some insects of this family; it is the Shellac, lately also found in the desert regions around the Gila and Colorado on the Larrea Mexicana. You will remember that excellent treatise on this variety of Shellac, written by Professor J.M. Stillman at Berkeley, on its chemical peculiarities.

But all these different forms of utility fall very lightly in weight, and can not even be counted as an extenuating circumstance, when we compare them to the enormous evils brought on farmer and gardener by the hosts of those Coccides that visit plantations, hothouses, and orchards.

To combat successfully against these insect-pests we have first to study their habits and then adapt to them our remedies, which you will see are more effective when well administered than those which we possess against insect pests of other classes.

I give here only the outlines of their natural history, peculiarities that are common to all, for it would be impossible to go into detail. Where there are exceptions of practical importance I will mention them.

In countries with a well defined winter the winged males appear as soon as white frosts are no more usual, and copulate with the unwieldy limbless female, that looks more like a gall or morbid excrescence, than a living animal. Shortly after the young ones are perceptible near the withered body of their mother, covered by waxy secretions that look somewhat like a feathery down.

These young ones are lively enough, they move about with agility, and it is not till high summer that they fasten themselves permanently, and lose feet and antennae, organs of locomotion and perception that are no more of any use to them. (There is a slight difference in this regard between different genera, as for instance, Coccus and Dorthesia retain these organs in different degrees of imperfection, Lecanium and Aspidiotus losing every trace of them.)

In this limbless, senseless state the females remain fall and winter. Toward the end of winter these animated galls begin to swell, and those containing males enter the state of the chrysalis, from which the males emerge at the beginning of the warm season and fecundate the gall-like females, which undergo neither chrysalis state nor any other change, but die, or we may call it dissolve into their offspring, for there scarcely remains anything of them, except a pruinous kind of down, after having given birth to the young ones.

Now we come to the practical deduction from these facts. It is clear that the only time when the scalebug can emigrate and infest a new tree is the time when it is a larva, that is, when it has the power of locomotion. In countries with a pronounced winter this time begins much later than with us, but it ends about the same time, that is, the beginning of August. I have seen the male of Aspidiotus in February, so that the active larva may be expected in March, and the active Lecanium Hesperidum I have seen last year, June 27, at Colonel Hooper's ranch in Sonoma County. We may safely fix the time of the active scalebug from March to August.

Notwithstanding the agility of the young scalebug, the voyage from one tree to another, considering the minute size of the traveler, is an undertaking but seldom succeeding, but one female bug, if we take into account its enormous fertility, is sufficient to cover with its grandchildren next year a tree of moderate size.

Besides there is another and much more effective way of transmigration by the kind assistance of the ant who colonizes the scalebug as well for its wax as it colonizes the Aphis for its honey. Birds on their feathers and the gardener himself on his dress contribute to spread them.

But even the ant can not transplant the scalebug when it is once firmly fixed by its rostrum.

It is evident, therefore, that the time for the application of insecticides is the time when all the scalebugs are fixed, that is about the end of July or beginning of August. All previous application will clean the tree or plant only for a time, and does not prevent a more or less numerous immigration from the neighboring vegetation, especially if an ant-hill is not far off.

As to the insecticide, there are to be applied two very effective ones, each with its advantages and disadvantages.

1. Petroleum and its different preparations.

2. Lye or soap.

The petroleum is the best disinfectant. It can safely be applied to any cutting or stem, as long as it is not planted, but is one of the most invidious substances when applied to vegetation in the garden, or fields. If effectively applied, it can not be prevented from running down the bark of the tree and entering the ground, where every drop binds a certain amount of earth to an insoluble substance, in which state it remains for ever. With every application the quantity of these insoluble compounds is augmented and sterility added.

If I am not mistaken, it was near Antwerp—at least I am certain it was in Belgium—where the first experience of this kind is recorded.

In France, preparations of coal tar have been recommended and have been lately used in the form of a paint. May be that in this form the substance is not so apt to enter into combinations with the soil. At any rate, the method is of too recent a date to permit any conclusions about the final result of these applications, as the invidious nature of the substance produces, by gradual accumulation, its effects, which are not perceived until they are irreparable.

2. Lye or soap. The application of these insecticides requires more care, and is therefore more troublesome. But instead of attracting fertility from the soil, they add to it. In Southern Europe soap and water has been for many years the remedy against the Lecanium Hesperidum. The method applied by the farmers in Portugal, as described to me by Dr. Bleasdale, is perhaps the most perfect one. The Portuguese have very well observed that the colonization of scalebugs always begins at the lowest end of the trunk and pretend, therefore, that the scalebug comes out of the ground. This, of course, is not the case, but may their interpretation be an error, they have been practical enough in utilizing their observation about the invasion beginning near the roots. They knead a ring of clay round the tree, in which ring the soap water runs when they wash the tree, and besides, they fill frequently the little ditch formed by this ring.

This arrangement of course is only possible in climates of a rainy summer.

As it is our object to make our knowledge as available as possible for practical purposes, I repeat for the benefit of cultivators the advice, without repeating the reasoning:

1. Use the petroleum for disinfecting imported trees and cuttings:

2. Use soap for cleaning trees planted in your orchard.

3. If you must use the petroleum in your garden, use it in August, when a single application is sufficient.

* * * * *



AGRICULTURAL ITEMS.

The exportation of dried apples from this country to France has greatly increased of late years, and now it is said that a large part of this useful product comes back in the shape of Normandy cider and light claret.

A.B. Goodsell says in the New York Tribune: "Put your hen feed around the currants. I did this twice a week during May and June, and not a currant worm was seen, while every leaf was eaten off other bushes 150 feet distant, and not so treated."

Buckwheat may be made profitable upon a piece of rough or newly cleared ground: No other crop is so effective in mellowing rough, cloddy land. The seed in northern localities should be sown before July 12; otherwise early frosts may catch the crops. Grass and clover may sometimes be sown successfully with buckwheat.

The London News says: "Of all poultry breeding, the rearing of the goose in favorable situations is said to be the least troublesome and most profitable. It is not surprising, therefore, that the trade has of late years been enormously developed. Geese will live, and, to a certain extent, thrive on the coarsest of grasses."

When a cow has a depraved appetite, and chews coarse, indigestible things, or licks the ground, it indicates indigestion, and she should have some physic. Give one pint and a half of linseed oil, one pound of Epsom salts, and afterward give in some bran one ounce of salt and the same of ground ginger twice a week.

Asiatic breeds of fowl lay eggs from deep chocolate through every shade of coffee color, while the Spanish, Hamburg, and Italian breeds are known for the pure white of the eggshell. A cross, however remote, with Asiatics, will cause even the last-named breeds to lay an egg slightly tinted.

In setting out currant bushes care should be exercised not to place any buds under ground, or they will push out as so many suckers. Currants are great feeders, and should be highly manured. To destroy the worm, steep one table-spoonful of hellebore in a pint of water, and sprinkle the bushes. Two or three sprinklings are sufficient for one season.

Mr. Joseph Harris, of Rochester, makes a handy box for protecting melons and cucumbers from insect enemies. Take two strips of board of the required size, and fasten them together with a piece of muslin, so the muslin will form the top and two sides of the box. Then stretch into box form by inserting a small strip of wood as a brace between the two boards. This makes a good, serviceable box, and, when done with for the season, it can be packed into a very small space, by simply removing the brace and bringing the two board sides together. As there is no patent on the contrivance, anybody can make the boxes for himself.

Mr. C. S. Read recently said before the London Fanners' Club: "American agriculturists get up earlier, are better educated, breed their stock more scientifically, use more machinery, and generally bring more brains to bear upon their work than the English farmer. The practical conclusion is, that if farmers in England worked hard, lived frugally, were clad as meanly as those of the States, were content to drink filthy tea three times a day, read more and hunted less, the majority of them may continue to live in the old country."—N. E. Farmer.

* * * * *



TIMBER TREES.

A paper was read by Sir R. Christison at the last meeting of the Edinburgh Botanical Society upon the "Growth of Wood in 1880." In a former paper, he said, he endeavored to show that, in the unfavorable season of 1879, the growth of wood of all kinds of trees was materially less than in the comparatively favorable season of 1878. He had now to state results of measurements of the same trees for the recent favorable season of 1880. The previous autumn was unfavorable for the ripening of young wood, and the trees in an unprepared condition were exposed during a great part of December, 1879, to an asperity of climate unprecedented in this latitude. This might have led one to expect a falling off in the growth of wood, and it appeared, from comparison of measurements, that, with very few exceptions, the growth of wood last year was even more below the average of favorable years than that of the bad year, 1879. Thus, in fifteen leaf-shedding trees of various species, exclusive of the oak, the average growth of trunk girth in three successive years was: 1878, 8-10ths; 1879, 45-100ths; 1880, 3-10ths and a half. In four specimens of the oak tribe, the growth was: 1878, 8-10ths; 1879, 77-100ths; 1880, 54-100ths. In twenty specimens of the evergreen Pinaceae the growth was: 1878, 8-10ths; 1879, 7-10ths; 1880, 6-10ths and a half. After giving details in regard to particular trees, Sir Robert stated, as general deductions from his observations, that leaf-shedding trees, exclusive of the oak, suffered most; that the evergreen Pinaceae suffered least; and that there was some power of resistance on the part of the oak tribe which was remarkable, the power of resistance of the Hungary oak being particularly deserving of attention. In another communication on the "extent of the season of growth," Sir Robert stated, as the result of observations on five leaf-shedding and five evergreen trees, that in the case of the former, even in a fine year, the growth of wood was confined very nearly, if not entirely, to the months of June, July, and August; while in the case of the latter growth commenced a month sooner, terminating, however, about the same time. Mr. A. Buchan said it was proposed that the inquiry should be taken up more extensively over Scotland.

* * * * *

MEDICAL USES OF FIGS.—Prof. Bouchut speaks (Comptes Rendus) of some experiments he has made, going to show that the milky juice of the fig-tree possesses a digestive power. He also observed that, when some of this preparation was mixed with animal tissue, it preserved it it from decay for a long time. This fact, in connection with Prof. Billroth's case of cancer of the breast, which was so excessively foul smelling that all his deodorizers failed, but which, on applying a poultice made of dried figs cooked in milk, the previously unbearable odor was entirely done away with, gives an importance to this homely remedy not to be denied.—Medical Press and Circ.

* * * * *



BLOOD RAIN.

The sensibilities of ignorant or superstitious people have at various times been alarmed by the different phenomena of so-called blood, ink, or sulphur rains. Ehrenberg very patiently collected records of the most prominent instances of these, and published them in his treatise on the dust of trade winds. Some, it is known, are due to soot; others, to pollen of conifers or willows; others, to the production of fungi and algae.

Many of the tales of the descent of showers of blood from the clouds which are so common in old chronicles, depends, says Mr. Berkeley, the mycologist, upon the multitudinous production of infusorial insects or some of the lower algae. To this category belongs the phenomenon known under the name of "red snow." One of the most peculiar and remarkable form, which is apparently virulent only in very hot seasons, is caused by the rapid production of little blood-red spots on cooked vegetables or decaying fungi, so that provisions which were dressed only the previous day are covered with a bright scarlet coat, which sometimes penetrates deeply into their substance. This depends upon the growth of a little plant which has been referred to the algae, under the name of Palmellae prodigiosa. The rapidity with which this little plant spreads over meat and vegetables is quite astonishing, making them appear precisely as if spotted with arterial blood; and what increases the illusion is, that there are little detached specks, exactly as if they had been squirted from a small artery. The particles of which the substance is composed have an active molecular motion, but the morphosis of the production has not yet been properly observed. The color of the so-called "blood rain" is so beautiful that attempts have been made to use it as a dye, and with some success; and could the plant be reproduced with any constancy, there seems little doubt that the color would stand. On the same paste with the "blood-rain" there have been observed white, blue, and yellow spots, which were not distinguishable in structure and character.

* * * * *



TOPICAL MEDICATION IN PHTHISIS.

Dr. G.H. Mackenzie reports in the Lancet an acute case of phthisis which was successfully treated by him by causing the patient to respire as continuously as possible, through a respirator devised for the purpose, an antiseptic atmosphere. The result obtained appears to bear out the experiments of Schueller of Greifswald, who found that animals rendered artificially tuberculous were cured by being made to inhale creosote water for lengthened periods. Intermittent spraying or inhaling does not produce the same result. In order to insure success the application to the lungs must be made continuously. For this purpose Dr. Mackenzie has used various volatile antiseptics, such as creosote, carbolic acid, and thymol. The latter, however, he has discarded as being too irritating and inefficient. Carbolic acid seems to be absorbed, for it has been detected freely in the urine after it had been inhaled; but this does not happen with creosote. As absorption of the particular drug employed is not necessary, and therefore not to be desired, Dr. Mackenzie now uses creosote only, either pure or dissolved in one to three parts of rectified spirits. "Whether," says he, "the success so far attained is due to the antidotal action of creosote and carbolic acid on a specific tubercular neoplasm, or to their action as preventives of septic poisoning from the local center in the lungs, it is certain that their continuous, steady use in the manner just described has a decidedly curative action in acute phthisis, and is therefore, worthy of an extended trial."

* * * * *



ON THE LAW OF AVOGADRO AND AMPERE.

The Scientific American Supplement of May 14,1881, contains, under this head, Mr. Wm. H. Greene's objections to my demonstration (in No. 270 of the same paper) of the error of Avogadro's hypothesis. The most important part of my argument is based on the evidence afforded by the compound cyanogen; and Mr. Greene, directing his attention to this subject in the first place, states that because cyanogen combines with hydrogen or with chlorine, without diminution of volumes, I have concluded that the hypothesis falls to the ground. This statement has impressed me with the conviction that Mr. Greene has failed to perceive the difficulty which is at the bottom of the question, and I will, therefore, present the subject more fully and comprehensively.

The molecule of any elementary body is, on the ground of the hypothesis, assumed to be a compound of two atoms, and the molecule of carbon consequently C_2=24; that of nitrogen N_2=28. Combination of the two, according to the same hypothesis, takes place by substitution; the atoms are supposed to be set free and to exchange places, forming a new compound different from the original only in this: that each new particle contains an atom of each of the two different substances, while each original particle consists of two identical atoms. The product is, therefore, assumed to be, and can, under the circumstances, be no other than particles of the composition CN and weight 26. These particles are molecules, according to the definition laid down, just as C_2 and N_2; but there is this essential difference, that the specific gravity of cyanogen gas, 26, coincides with the molecular weight, while the assumed molecular weight, N_2=28, is twice as great as the specific gravity of the gas, N=14.

In using the term molecular weight, it is to be remembered that it does not express the weight of single molecules, but only their relative weight, millions of millions molecules being contained in the unit of volume. But on the hypothesis that there is the same number of molecules in the same volume of any gas, the specific gravities of gases can be, and are, identified with their molecular weights, and, on the ground of the hypothesis again, the unit of the numbers which enter into every chemical reaction and constitute the molecular weight, is stipulated to be that contained in two volumes.

The impossibility of the correctness of the hypothesis is now revealed by the fact just demonstrated, that in the case of nitrogen the specific gravity does not coincide with the molecular weight. If equal volumes contain the same number of molecules, the specific gravities and the molecular weights must be the same; and if the specific gravities and molecular weights are not the same, equal volumes cannot contain the same number of molecules. The assumed molecular weight of nitrogen is twice as great as the specific gravity, but the molecular weight and the specific gravity of cyanogen are identical; the number of molecules contained in one volume of cyanogen must, therefore, necessarily be twice as great as the number contained in one of nitrogen, and this is fully and completely borne out by the chemical facts.

In saying that when cyanogen combines with chlorine there is naturally no condensation, Mr. Greene has no idea that this natural law is fatal to his artificial law of Avogadro and Ampere; "for," continues he, "the theory is fulfilled by the actual reaction." It is not. The theory requires two vols. of cyanogen and two vols. of chlorine, that is, the unit of numbers, to enter into reaction and to produce two vols. of the compound. But they produce four vols., and the non-condensation is therefore in opposition to the theory. It is true beyond doubt that the molecular weight of cyanogen chloride is contained in two volumes, in spite of the hypothesis, not on the ground of it; two vols. + two vols., producing four vols.; two vols. could, theoretically, contain only half the unit of numbers, and there seems to be no escape from the following general conclusions:

1. Two vols. of CNCl, representing the unit of numbers, the constituent weights, C=12, N=14, Cl=35.5, must each, likewise, represent the same number; the molecular weight is, therefore, contained in one vol. of N or Cl, but in two of CNCl and equal numbers are not contained in equal volumes.

2. The weights N=14, Cl=35.5 occupy in the free state one volume, but in the combination, CNCl, two volumes; their specific gravity is, therefore, by chemical action reduced to one half. The fact thus elicited of the variability and variation of the specific gravity is of fundamental importance and involves the irrelevancy of the mathematical demonstration of the hypothesis. In this demonstration the specific gravity is assumed to be constant, and this assumption not holding good, and the number of molecules in unit of volume being reduced to one half when the specific gravity is reduced to the same extent by chemical action, it is obvious that the mathematical proof must fail. Mr. Greene states that I have proceeded to demolish C. Clerk Maxwell's conclusion from mathematical reasoning. This is incorrect; I have found no fault with the conclusion of the celebrated mathematician, and consider his reasoning unimpeachable. I am also of opinion that he is entitled to great credit and respect for the prominent part he has taken in the development of the kinetic theory, and further think that it was for the chemists to produce the fact of the variability of the specific gravities, which they would probably not have failed to do but for the prevalence of Avogadro's hypothesis, which is virtually the assertion of the constancy of the specific gravities.

3. The unit of numbers being represented by Cl=35.5, it is likewise represented by H=1, and as the product of the union of the two elements is HCl, 36.5 = two vols., combination takes place by addition and not by substitution; consequently are

4. The elementary molecules not compounds of atoms? And the distinction between atoms and molecules is an artificial one, not justified by the natural facts.

5. Is the molecular weight not in every instance = two volumes?

These conclusions overthrow all the fundamental assumptions on which the hypothesis rests, and leave it, in the full meaning of the term, without support. Though Mr. Greene states that my arguments are based upon entirely erroneous premises, he has not even attempted to invalidate a single one of my premises.

As he considers the non-condensation to be natural in the case of cyanogen and chlorine, the condensation of two vols. of HCl + two vols. of H3N to two vols. of NH4Cl ought to appear to him unnatural. He, however, contends for it, and tries, on this solitary occasion, to strengthen his opinion by authority, though the proof, if it could be given, that ammonium chloride at the temperature of volatilization is decomposed into its two constituents, would be insufficient to uphold the theory.

The ground on which Mr. Greene assumes a partial decomposition at 350 deg. C. is the slight excess of the observed density (14.43) over that corresponding to four vols. (13.375). There is, however, a similar slight excess in the case of the vapor of ammonium cyanide, the same values being respectively 11.4 and 11; and as this compound is volatile at 100 deg. C and, at the same time, is capable to exist at a very high temperature, being formed by the union of carbon with ammonia, nobody has ever, as far as I am aware, maintained that it is completely or partially decomposed at volatilization. The excess of weight not being due, therefore, to such cause in this case, it cannot be due to it in the other.

The question being whether the molecular weight of ammonium chloride is two vols. or four vols., an idea of the magnitude of the assumed decomposition is conveyed by the proportion of the volume of the decomposed salt to the volume of the non-decomposed, and Mr. Greene's quotation of the percentage of weight is irrelevant and misleading, and his number not even correct. A mixture containing

1.055 vols. of spec. gr. 26.75 = 28.22 and 12.32 " " " " 13.375 = 164.78 ——— ——— 13.375 " 193

has the spec. gr. 193 / 13.375 = 14.43. The proportion in one vol. of the undecomposed to the decomposed salt is, therefore, as 1 to 11.68 and the percentage of volume of the former 0.0789, and that of weight 28.22 / 193 = 0.146, and not 0.16.

It is not easy to imagine why a small fraction of the heavy molecules should be volatilized undecomposed, the temperature being sufficient to decompose the great bulk. Marignac assumes, indeed, partial decomposition, but the difficulties which he encountered in making the experiments, on the results of which his opinion rests, were so great that he himself accords to the numbers obtained by him only the value of a rough approximation.

The heat absorbed in volatilization will comprise the heat of combination as well as of aggregation, if decomposition takes place, and will therefore be the same as that set free at combination. Favre and Silbermann found this to be 743.5 at ordinary temperature, from which Marignac concludes that it would be 715 for the temperature 350 deg.; he found as the heat of volatilization 706, but considers the probable exact value to be between 617 and 818.[1]

[Footnote 1: See Comptes Rendus, t. lxvii., p. 877.]

An uncertainty within so wide a range does not justify the confidence of Mr. Greene which he expresses in these words: "It is, therefore, extremely probable that ammonium chloride is almost entirely dissociated, even at the temperature of volatilization." By Boettinger's apparatus a decomposition may possibly have been demonstrated, but it remains to be seen whether it is not due to some special cause.

When Mr. Greene says that the relations between the physical properties of solids and liquids and their molecular composition can in no manner affect the laws of gases, nobody is likely to dissent; but the conclusion that their discussion is foreign to the question of the number of molecules in unit of volume does by no means follow. If the specific gravity of a solid or the weight of unit of volume represents a certain number of molecules, and is found to occupy two volumes in a compound of the solid with another solid, the number of molecules in one volume is reduced to one half. This I have shown to be the case in a number of compounds, and the decrease of the specific gravity with increase of the complexity of composition appears to be a general law, as may be concluded from the very low specific gravity of the most highly organized compounds, for instance the fatty bodies, the molecules of which, being composed of very many constituents, are of heavy weight; and likewise the compounds which occur in combination with water and without it, the simpler compound having invariably a greater specific gravity than the one combined with water; for instance:

BaH_2O_2 sp. gr. 4.495 " " + 8H_2O " 1.656 S_2H_2O_2 " 3.625 " " + 8H_2O " 1.396 FeSO_4 " 3.138 " + 7H_2O " 1.857

and so in every other case. This is now a recurrence of what takes place in gases, and proves the fallacy of the hypothesis; for if these compounds could be volatilized the vapor densities would necessarily vary in the inverse proportion of the degree of composition.

The reproach that Berthelot has been endeavoring for nearly a quarter of a century to hold back the progress of scientific chemistry, is a great and unjustifiable misrepresentation of the distinguished chemist and member of the Institute of France, who has done so much for thermo-chemistry, and the more unfortunate as it seems to serve only the purpose of a prelude to the following sentences: "But Mr. Vogel cannot claim, as can Mr. Berthelot, any real work or experiment, however roughly performed, suggested by the desire to prove the truth of his own views. Let him not, then, bring forth old and long since explained discrepancies, ... but when he will have discovered new or overlooked facts ... chemists will gladly listen." ... Mr. Greene is here no longer occupied to investigate whether what I have said concerning Avogadro's hypothesis is true or false, but with myself he has become personal, and in noticing his remarks my sole object is to contend against an error which is much prevalent. If, according to Mr. Greene, the real work of science consists in experimenting, and conclusions unsupported by our own experiments have no value, it does not appear for what purpose he has published his answer to my paper; an experiment of his, settling Marignac's uncertain results, would have justified the reliance he places on them. The ground he takes is utterly untenable. Experiments are necessary to establish facts; without them there could be no science, and the highest credit is due to those who perform successfully difficult or costly experiments. Experimenting is, however, not the aim and object of science, but the means to arrive at the truth; and discoveries derived from accumulated and generally accepted facts are not the less valuable on account of not having been derived from new and special experiment.

It is, further, far from true that the real work of science consists in experimenting; mental work is not less required, and the greatest results have not been obtained by experimenters, but by the mental labor of those who have, from the study of established facts, arrived at conclusions which the experimenters had failed to draw. This is naturally so, because a great generalization must explain all the facts involved, and can be derived only from their study; but the attention of the experimenter is necessarily absorbed by the special work he undertakes. I refer to the three greatest events in science: the discovery of the Copernican system, the three laws of Kepler, and Newton's law of gravitation, none of which is due to direct and special experimentation. Copernicus was an astronomer, but the discovery of his system is due chiefly to his study of the complications of the Ptolemaic system. Kepler is a memorable witness of what can be accomplished by skillful and persistent mental labor. "His discoveries were secrets extorted from nature by the most profound and laborious research." The discovery of his third law is said to have occupied him seventeen years. Newton's great discovery is likewise the result of mental labor; he was enabled to accomplish it by means of the laws of Kepler, the laws of falling bodies established by Galileo, and Picard's exact measurement of a degree of a meridian.

If, then, mental work is as indispensable as experimental, it is not less true that there are men more specially fitted for the one, others for the other, and the best interests of science will be served when experiments are made by those specially adapted, skillful, and favorably situated, and the possibly greatest number of men, able and willing to do mental work, engage in extracting from the accumulated treasures of experimental science all the results which they are capable to yield. Any truth discovered by this means is clear gain, and saves the waste of time, labor, and money spent in unnecessary experiment. Mr. Greene's zeal for experiment and depreciation of mental work would be in order, if ways and means were to be found to render the advancement of science as difficult and slow as possible; they are decidedly not in the interest of science, and can not have been inspired by a desire for its promotion.

As the evidence of the specific heats of the fallacy of Avogadro's hypothesis involves lengthy explanations, the subject is reserved for another paper.

San Francisco, Cal., May, 1881.

E. VOGEL.

* * * * *



DYEING REDS WITH ARTIFICIAL ALIZARIN.

By M. MAURICE PRUD'HOMME.

Since several years, the methods of madder dyeing have undergone a complete revolution, the origin of which we will seek to point out. When artificial alizarin, thanks to the beautiful researches of Graebe and Liebermann, made its industrial appearance in 1869, it was soon found that the commercial product, though yielding beautiful purples, was incapable of producing brilliant reds (C. Koechlin). While admitting that the new product was identical with the alizarin extracted from madder, we were led to conclude that in order to produce fine Turkey reds, the coloring matters which accompany alizarin must play an important part. This was the idea propounded by Kuhlmann as far back as 1828 (Soc. Ind. de Mulhouse, 49, p. 86). According to the researches of MM. Schuetzenberger and Schiffert, the coloring matters of madder are alizarin, purpurin, pseudopurpurin, purpuroxanthin, and an orange matter, which M. Rosenstiehl considers identical with hydrated purpurin. Subsequently, there have been added to the list an orange body, purpuroxantho-carbonic acid of Schunck and Roemer, identical with the munjistin found by Stenhouse in the madder of India. It was known that purpuroxanthin does not dye; that pseudopurpurin is very easily transformed into purpurin, and the uncertainty which was felt concerning hydrated purpurin left room merely for the hypothesis that Turkey-red is obtained by the concurrent action of alizarin and purpurin. In the meantime, the manufacture of artificial alizarin became extended, and a compound was sold as "alizarin for reds." It is now known, thanks to the researches of Perkin, Schunck, Roemer, Graebe, and Liebermann, that in the manufacture of artificial alizarin there are produced three distinct coloring matters—alizarin, iso or anthrapurpurin, and flavopurpurin, the two latter being isomers of purpurin. We may remark that purpurin has not been obtained by direct synthesis. M. de Lalande has produced it by the oxidation of alizarin. Alizarin is derived from monosulphanthraquinonic acid, on melting with the hydrate of potassa or soda. It is a dioxyanthraquinone.

Anthrapurpurin and flavopurpurin are obtained from two isomeric disulphanthraquinonic acids, improperly named isoanthraflavic and anthraflavic acids, which are converted into anthrapurpurin and flavopurpurin by a more profound action of potassa. These two bodies are trioxyanthraquinones.

We call to mind that alizarin dyes reds of a violet tone, free from yellow; roses with a blue cast and beautiful purples. Anthrapurpurin and flavopurpurin differ little from each other, though the shades dyed with the latter are more yellow. The reds produced with these coloring matters have a very bright yellowish reflection, but the roses are too yellow and the purples incline to a dull gray.

Experience with the madder colors shows that a mixture of alizarin and purpurin yields the most beautiful roses in the steam style, but it is not the same in dyeing, where the roses got with fleur de garance have never been equaled.

"Alizarins for reds" all contain more or less of alizarin properly so-called, from 1 to 10 per cent., along with anthrapurpurin and flavopurpurin. This proportion does not affect the tone of the reds obtained further than by preventing them by having too yellow a tone.

The first use of the alizarins for reds was for application of styles, that is colors containing at once the mordant and the coloring matter and fixed upon the cloth by the action of steam. Good steam-reds were easily obtained by using receipts originally designed for extracts of madder (mixtures of alizarin and purpurin). On the other hand, the first attempts at dyeing red grounds and red pieces were not successful. The custom of dyeing up to a brown with fleur and then lightening the shade by a succession of soapings and cleanings had much to do with this failure. Goods, mordanted with alumina and dyed with alizarin for reds up to saturation, never reach the brown tone given by fleur or garancin. This tone is due in great part to the presence of fawn colored matters, which the cleanings and soapings served to destroy or remove. The same operations have also another end—to transform the purpurin into its hydrate, which is brighter and more solid. The shade, in a word, loses in depth and gains in brightness. With alizarins for reds, the case is quite different; they contain no impurities to remove and no bodies which may gain brightness in consequence of chemical changes under the influence of the clearings and soapings. These have only one result, in addition to the formation of a lake of fatty acid, that is to make the shades lose in intensity. The method of subjecting reds got up with alizarin to the same treatment as madder-reds was faulty.

There appeared next a method of dyeing bases upon different principles. The work of M. Schuetzenberger (1864) speaks of the use of sulpho-conjugated fatty acids for the fixation of aniline colors. In England, for a number of years, dyed-reds had been padded in soap-baths and afterwards steamed to brighten the red. In 1867, Braun and Cordier, of Rouen, exhibited Turkey reds dyed in five days. The pieces were passed through aluminate of soda at 18 deg. B., then through ammonium chloride, washed, dyed with garancin, taken through an oil-bath, dried and steamed for an hour, and were finally cleared in the ordinary manner for Turkey-reds. The oil-bath was prepared by treating olive-oil with nitric acid. This preparation, invented by Hirn, was applied since 1846 by Braun (Braun and Cordier). Since 1849, Gros, Roman, and Marozeau, of Wesserling, printed fine furniture styles by block upon pieces previously taken through sulpholeic acid. When the pieces were steamed and washed the reds and roses were superior to the old dyed reds and roses produced at the cost of many sourings and soapings. Certain makers of aniline colors sold mixtures ready prepared for printing which were known to contain sulpholeic acids. There was thus an idea in the air that sulpholeic acid, under the influence of steam, formed brilliant and solid lakes with coloring matters. These facts detract in nothing from the merit of M. Horace Koechlin, who combined these scattered data into a true discovery. The original process may be summed up under the following heads: Printing or padding with an aluminous mordant, which is fixed and cleaned in the usual manner; dyeing in alizarin for reds with addition of calcium acetate; padding in sulpholeic acid and drying; steaming and soaping. The process was next introduced into England, whence it returned with the following modifications; in place of olive-oil or oleic acid, castor oil was used, as cheaper, and the number of operations was reduced. Castor oil, modified by sulphuric acid, can be introduced at once into the dye-beck, so that the fixation of the coloring matter as the lake of a fatty acid is effected in a single operation. The dyeing was then followed by steaming and soaping.

For red on white grounds and for red grounds, a mordant of red liquor at 5 deg. to 6 deg. B. is printed on, with a little salt of tin or nitro-muriate of tin. It is fixed by oxidation at 30 deg. to 35 deg. C., and dunged with cow-dung and chalk. The pieces are then dyed with 1 part alizarin for reds at 10 per cent., 1/4 to 1/2 oil for reds (containing 50 per cent.), 1-6th part acetate of lime at 15 deg. B., giving an hour at 70 deg. and half an hour at the same heat. Wash, pad in oil (50 to 100 grms. per liter of water), dry on the drum, or better, in the hot flue, and steam for three-quarters to an hour and a half. The padding in oil is needless, if sufficient oil has been used in dyeing, and the pieces may be at once dried and steamed. Wash and soap for three-quarters of an hour at 60 deg.. Give a second soaping if necessary. If there is no fear of soiling the whites, dye at a boil for the last half-hour, which is in part equal to steaming.

Red pieces and yarns may be dyed by the process just given for red grounds; or, prepare in neutral red oil, in the proportion of 150 grms. per liter of water for pieces and 15 kilos for 100 kilos of yarns. For pieces, pad with an ordinary machine with rollers covered with calico. Dry the pieces in the drum, and the yarn in the stove. Steam three-quarters of an hour at 11/2 atmosphere. Mordant in pyrolignite of alumina at 10 deg. B., and wash thoroughly. Dye for an hour at 70 deg., and half an hour longer at the same heat, using for 100 kilos of cloth or yarn 20 kilos alizarin at 10 per cent., 10 kilos acetate of lime at 18 deg. B., and 5 kilos sulpholeic acid. Steam for an hour. Soap for a longer or shorter time, with or without the addition of soda crystals. There may be added to the aluminous mordant a little salt of tin to raise the tone. Lastly, aluminate of soda may be used as a mordant in place of red liquor or sulphate of alumina.

Certain firms employ a so-called continuous process. The pieces are passed into a cistern 6 meters long and fitted with rollers. This dye-bath contains, from 3 to 5 grms. of alizarin per liter of water, and is heated to 98 deg.. The pieces take 5 minutes to traverse this cistern, and, owing to the high temperature and the concentration of the dye liquor, they come out perfectly dyed. Two pieces may even be passed through at once, one above the other. As the dye-bath becomes exhausted, it must be recruited from time to time with fresh quantities of alizarin. The great advantage of this method is that it economizes not merely time but coloring matter.

The quantity of acetate of lime to be employed in dyeing varies with the composition of the mordant and with that of the water. Schlumberger has shown that Turkey-red contains 4 molecules of alumina to 3 of lime. Rosenstiehl has shown that alumina mordants are properly saturated if two equivalents of lime are used for each equivalent of alizarin, if the dyeing is done without oil. These figures require to be modified when the oil is put into the dye beck, as it precipitates the lime. Acetate of lime at 15 deg. B., obtained by saturating acetic acid with chalk and adding a slight excess of acetic acid, contains about 1/4 mol. acetate of lime.—Bulletin de la Societe Chimique de Paris.

* * * * *



THE SCIENTIFIC AMERICAN SUPPLEMENT.

PUBLISHED WEEKLY.

TERMS OF SUBSCRIPTION, $5 A YEAR.

Sent by mail, postage prepaid, to subscribers in any part of the United States or Canada. Six dollars a year, sent, prepaid, to any foreign country.

All the back numbers of THE SUPPLEMENT, from the commencement, January 1, 1876, can be had. Price, 10 cents each.

All the back volumes of THE SUPPLEMENT can likewise be supplied. Two volumes are issued yearly. Price of each volume, $2.50, stitched in paper, or $3.50, bound in stiff covers.

COMBINED RATES—One copy of SCIENTIFIC AMERICAN and one copy of SCIENTIFIC AMERICAN SUPPLEMENT, one year, postpaid, $7.00.

A liberal discount to booksellers, news agents, and canvassers.

MUNN & CO., PUBLISHERS,

37 PARK ROW, NEW YORK, N. Y.

* * * * *



PATENTS.

In connection with the SCIENTIFIC AMERICAN, Messrs. MUNN & Co. are Solicitors of American and Foreign Patents, have had 35 years' experience, and now have the largest establishment in the world. Patents are obtained on the best terms.

A special notice is made in the SCIENTIFIC AMERICAN of all Inventions patented through this Agency, with the name and residence of the Patentee. By the immense circulation thus given, public attention is directed to the merits of the new patent, and sales or introduction often easily effected.

Any person who has made a new discovery or invention can ascertain, free of charge, whether a patent can probably be obtained, by writing to MUNN & Co.

We also send free our Hand Book about the Patent Laws, Patents, Caveats. Trade Marks, their costs, and how procured, with hints for procuring advances on inventions. Address

MUNN & CO., 37 PARK ROW, NEW YORK.

Branch Office, cor. F and 7th Sts., Washington, D. C.

THE END

Previous Part     1  2
Home - Random Browse