p-books.com
Popular Lectures on Zoonomia - Or The Laws of Animal Life, in Health and Disease
by Thomas Garnett
Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse

Modern chemistry however enables us to explain the phenomena of respiration in a satisfactory manner.

In order to see this, we shall proceed to examine the changes produced by respiration; firstly, on the air, and secondly, on the blood.

The air which has served for respiration, is found to contain a mixture of azotic and carbonic acid gas, with a small quantity of oxygen gas; and a considerable quantity of water is thrown off from the lungs, in the form of vapour, during respiration.

From a variety of facts, it appears that oxygen gas is decomposed in the lungs during respiration; a part of it unites, as we shall afterwards see, with the iron contained in the blood, and converts it into an oxid; another and greater portion unites with the carbon, brought by the venous blood from all parts of the body to the lungs, and thus forms carbonic acid gas; while another portion of the oxygen unites with the hydrogen, brought in the same manner by the blood, and forms water. Thus then we are able to account for the different products of respiration.

Hence we see, that the explanation of animal heat follows as a simple and beautiful corollary from the theory of combustion; and we may consider respiration as an operation in which oxygen gas is continually passing from the gaseous to the concrete state; it will therefore give out at every instant the heat which it held in combination, and this heat, being conveyed by the circulation of the blood to all parts of the body, is a constant source of heat to the animal.

These facts likewise enable us to explain the reason, why an animal preserves the same temperature, notwithstanding the various changes which occur in the temperature of the surrounding atmosphere. In winter the air is condensed by the cold, the lungs therefore receive a greater quantity of oxygen in the same bulk, and the heat extricated will be proportionally increased. In summer, on the contrary, the air being rarefied by the heat, a less quantity of oxygen will be received by the lungs during each inspiration, and consequently the heat which is extricated must be less.

For the same reason, in northern latitudes, the heat extricated by respiration will be much greater than in the southern. By this simple and beautiful contrivance, nature has moderated the extremes of climate, and enabled the human body to bear vicissitudes which would otherwise destroy it.

Of all the phenomena of the animal body, there is none at first sight more remarkable, than that which animals possess of resisting the extremes of temperature.

The heat of the body, as has already been observed, continues at the same degree, though the temperature of the atmosphere be sometimes considerably hotter, at other times considerably colder, than the animal body: so that man is able to live, and to preserve the temperature of health, on the burning sands of Africa, and on the frozen plains of Siberia.

The alterations of temperature which the human body has been known to bear, without any fatal or even bad effects, are not less than 400 degrees or 500 degrees of Fahrenheit. The natural heat of the human body is 96 degrees or 97 degrees. In the West Indies, the heat of the atmosphere is often 98 degrees or 99 degrees, and sometimes rises even to 126 degrees, or 30 degrees above the temperature of the human body, notwithstanding which, a thermometer put in the mouth points to 96 degrees or 97 degrees. The inhabitants of the hot regions of Surinam support, without inconvenience, the heat of their climate. We are assured that in Senegal, about the latitude of 17 degrees, the thermometer in the shade generally stands at 108 degrees, without any fatal effects to men or animals. The Russians often live in places heated by stoves to 108 degrees or 109 degrees, and some philosophers in this country, by way of experiment, remained a considerable time in a room heated above the boiling point of water.

On the other hand, an equal excess of cold seems to have no greater effect in altering the degree of heat proper to animal bodies. Delisle has observed a cold in Siberia 70 degrees below the zero of Fahrenheit's scale, notwithstanding which animals lived. Gmelin has seen the inhabitants of Jeniseisk under the 58th degree of northern latitude, sustaining a degree of cold, which in January became so severe, that the spirit in the thermometer was 126 degrees below the freezing point. Professor Pallas in Siberia, and our countrymen at Hudson's Bay, have experienced a degree of cold almost equal to this. All these facts tend to prove, that the heat of animals continues without alteration in very different temperatures. Hence it is evident that they must be able to produce a greater degree of heat, when surrounded by a cold medium; and on the contrary, that they must effect a diminution of the heat, when the surrounding medium is very hot.

All these circumstances may be accounted for, by the principles we have laid down; the decomposition of oxygen in the lungs.

There have not been wanting, however, some very eminent physiologists, who have contended that animal heat is produced chiefly by the nerves. They have brought forward in proof of this the well known fact, that when the spinal marrow is injured, the temperature of the body generally becomes diminished; and that in a paralytic limb the heat is less than ordinary, though the strength and velocity of the pulse remain the same. These facts, and others of a similar nature, have induced them to believe, that the nervous system is the chief cause and essential organ of heat; and they have adduced similar arguments, to prove that nutrition is performed by the nerves, for a limb which is paralytic from an injury of the nerves, wastes, though the circulation continues. The truth is, that the nerves exert their influence upon these, and all other functions of the body, and modify their action. The liver secretes bile, but if the nerves leading to it be destroyed, the secretion of bile will cease; but who will say, that the bile is secreted by the nerves? The nitric acid will dissolve metals, and this solution will go on more quickly if heat be applied; but surely the nitric acid is the solvent, the heat being only an aiding cause.

But though the human body has been so wisely constructed, as to bear, without inconvenience, a considerable variation of temperature; yet this latitude has its limits, which depend upon the capability of extricating heat from the atmosphere. There must be a limit below which the diminution of heat takes place faster than its production. If this be continued, or increased, the heat of the animal must diminish, the functions lose their energy, and an insuperable inclination to sleep is felt, in which if the sufferer indulge, he will be sure to wake no more.

This is confirmed by what happened to Sir Joseph Banks and his party on the heights of Terra del Fuego. Dr. Solander, who had more than once crossed the mountains which divide Sweden from Norway, well knew that extreme cold produces an irresistible torpor and sleepiness, he therefore conjured the company to keep always in motion, whatever exertion it might require, and however great might be their inclination to rest. Whoever sits down, says he, will sleep; and whoever sleeps will wake no more. Thus, at once admonished and alarmed, they set forward; but, while they were still upon the naked rocks, the cold was so intense, as to produce the effects which had been so much dreaded. Dr. Solander himself was the first who found the inclination against which he had warned others, irresistible; and insisted on being suffered to lie down. Sir Joseph entreated and remonstrated in vain; he lay down upon the ground, though it was covered with snow; and it was with great difficulty that his friend kept him from sleeping. One of his black servants also began to linger, having suffered from the cold in the same manner as the Doctor. Partly by persuasion, and partly by force, they were got forwards; soon however they both declared that they would go no further. Sir Joseph had recourse again to entreaty and expostulation, but these produced no effect: when the black was told, that if he did not go on, he would shortly be frozen to death; he answered, that he desired nothing so much as to lie down and die. The Doctor did not so explicitly renounce his life, but said, he would go on, if they would first allow him to take some sleep, though he had before told them, that to sleep was to perish. They both in a few minutes fell into a profound sleep, and after five minutes Sir Joseph Banks happily succeeded in waking Dr. Solander, who had almost lost the use of his limbs; the muscles were so shrunk, that his shoes fell from his feet; but every attempt to recal the unfortunate black to life proved unsuccessful.

As the circulation of the blood is the means by which the heat produced is conveyed to all parts of the body; and as it is a function of the highest importance, I shall, in the next lecture, proceed to the consideration of it.

LECTURE III. CIRCULATION OF THE BLOOD.

Two kinds of motion may be distinguished in the animal economy; the one voluntary, or under the command of the will, which takes place at certain intervals, but may be stopped at pleasure. The other kind of motion is called involuntary, as not depending on the will, but going on constantly, without interruption, both when we sleep and when we wake.

Of the first kind is the motion of the limbs, of which I have already spoken in general terms; the object of which is, to change the situation of the animal, and carry it where the will directs.

Among the involuntary motions, the most remarkable is the circulation of the blood, which I shall proceed to consider in this lecture.

There is one motion, however, which claims a middle place between the voluntary and involuntary; I mean respiration. This action is so far under the command of the will, that it may be suspended, increased, or diminished in strength and frequency: but we can only suspend it for a very short time; and it goes on regularly during sleep, and in general, even when we are awake, without the intervention of the will; its continuation being always necessary, as we have already seen, to support life.

The motion of the fluids in the living body is regulated by very different laws, from those which govern the motion of ordinary fluids, that depend upon their gravity and fluidity: these last have a general centre of gravitation to which they incessantly tend. Their motion is from above downwards, when not prevented by any obstacles; and when they meet with obstruction, they either stop till the obstacle is removed, or escape where they find the least resistance. When they have reached the lowest situations, they remain at rest, unless acted upon by some internal impulse, which again puts them in motion.

But the motion of the fluids in an animal body, is less uniform, constant, and regular; it takes place upwards as well as downwards, and overcomes numerous obstacles; it carries the blood from the interior parts of the body to the surface, and from the surface back again to the internal parts; it forces it from the left side of the body to the right, and with such rapidity that not a particle of the fluid remains an instant in the same place.

The principal organ concerned in the circulation of the blood, is the heart; which is a hollow muscle, of a conical figure, with two cavities, called ventricles; this organ is situated in the thorax or chest; its apex or point is inclined downwards and to the left side, where it is received in a cavity of the left lobe of the lungs.

At the basis of the heart on each side are situated two cavities, called auricles, to receive the blood; and these contracting, force the blood into the ventricles, which are two cavities in the heart, separated from each other by a strong muscular partition. The cavity which is situated on the right side of the heart, is called the right ventricle, and that on the left the left ventricle. From the right ventricle of the heart issues a large artery, called the pulmonary artery, which goes to the lungs, and is there divided and subdivided into a vast number of branches, the extremities of which are too small to be visible. These ultimate ramifications unite again into larger branches; these again into branches still larger, and so continually, till at last they form four tubes, called the pulmonary veins, which are inserted into the left auricle of the heart,

From the left ventricle of the heart there issues another large artery, called the aorta, which, in its passage, sends off branches to the heart, arms, legs, head, and every other part of the body. These branches, in the course of their progress, are divided and subdivided into innumerable minute ramifications, the last of which are invisible. These small ramifications unite again into branches continually larger and larger, till they form two great tubes, called the venae cavae; which large veins are inserted into the right auricle of the heart; where a vein, termed the coronary vein of the heart, which returns the blood from the heart itself, also terminates.

From what has been said, it will be evident, that strictly speaking, there are only two arteries and seven veins in the body; one pulmonary artery, which carries the blood from the right ventricle of the heart to the lungs, and four pulmonary veins, which bring it back again; then the aorta or large artery, which carries the blood from the left ventricle of the heart to all parts of the body; the two venae cavae, and the coronary vein of the heart, which bring it back again.

At the beginning of both arteries, where they leave the heart, are placed valves, which allow the blood to flow freely from the heart into the arteries, but which prevent its return to the heart. There are likewise valves between the auricles and ventricles, which permit the blood to flow from the former into the latter, but prevent its return into the auricles. The veins are likewise furnished with valves, which allow the blood to flow from their minute branches along the larger toward the heart, but prevent its returning to these minute branches.

The blood being brought back from all parts of the body into the right auricle of the heart, distends this cavity, and thus causes it to contract; this auricle, by contracting, forces the blood into the right ventricle; this muscular cavity being distended and irritated by the blood, contracts, and propels the blood through the pulmonary artery into the lungs: from hence it is brought back by the pulmonary veins, to the left auricle of the heart, by whose contraction it is forced into the left ventricle. The contraction of this ventricle propels the blood, with great force, into the aorta, through the innumerable ramifications of which, it is carried to every part of the body, and brought back by veins, which accompany these arterial ramifications, and form the venae cavae, which conduct the blood into the right auricle of the heart, from whence it is again sent into the right ventricle, which sends it through the pulmonary artery, to the lungs; the pulmonary veins bring it back again to the heart, from whence it is propelled through the aorta, to all parts of the body: thus running a perpetual round, called the circulation of the blood.

Thus then we see, that the circulation consists of two circles or stages, one through the lungs, which may be called the pulmonary, or lesser circle, and the other through all parts of the body, which may be termed the aortal, or greater circle.

That the blood circulates in this manner, is evident, from the valves placed at the origin of the arteries, and in the large branches of the veins, which prevent the return of the blood to the heart, in any other manner than that I have described. This is likewise evident, in the common operation of blood letting: when the arm is tied, the vein swells below the ligature, instead of above, and we do not make the opening above the ligature, or on the side next the heart. If the vein were opened above the ligature, it would not bleed. For it only swells next the hand, which shows that the blood does not flow into the vein downwards from the heart, but upwards from the hand.

If the ligature be too tight, the blood will not flow through the opening in the vein. The reason of this, is, that the artery is compressed, in this case, as well as the vein; and as the veins derive their blood from the arteries, it follows that if the blood's motion be obstructed in the latter, none can flow from them into the former: when we wish to open an artery, the orifice must be made above the ligature.

Another proof of the circulation being performed in this manner, is derived from microscopic observations, on the transparent parts of animals, in which the blood can be seen to move towards the extremities, along the arteries, and return by the veins.

The blood, however, does not flow out of the heart into the arteries in a continued stream, but by jets, or pulses; when the ventricles are filled with blood from the auricles, this blood stimulates them, and thereby causes them to contract; by such contraction, they force the blood, which they contain, into the arteries; this contraction is called the systole of the heart. As soon as they have finished their contraction, they relax, till they are again filled with blood from the auricles, and this state of relaxation of the heart, is called the diastole.

This causes the pulsation or beating of the heart. The arteries must, of course, have a similar pulsation, the blood being driven into them only by starts; and accordingly we find it in the artery of the wrist; this beating we call the pulse; the like may also be observed in the arteries of the temples, and other parts of the body. The veins, however, have no pulsation, for the blood flowing on, in an uninterrupted course, from smaller tubes to wider, its pulse becomes entirely destroyed.

The different cavities of the heart do not contract at the same time; but the two auricles contract together, the ventricles being at that time in a state of relaxation; these ventricles then contract together, while the auricles become relaxed.

Both the arteries and veins may be compared to a tree, whose trunk is divided into large branches; these are subdivided into smaller, the smaller again into others still smaller; and we may observe, likewise, that the sum of the capacities of the branches, which arise from any trunk, is always greater than the capacity of the trunk.

The minutest branches of the arteries, being reflected, become veins, or else they enter veins that are already formed, by anastomosis, as it is called; the small veins continually receiving others, become, like a river, gradually larger, till they form the venae cavae, which conduct the blood to the heart.

Anatomical injections prove, that the last branches of the arteries terminate in the beginning of veins; but it is the opinion of many celebrated physiologists, that the arteries carry the blood to the different parts of the body to nourish them, and that the veins commence by open mouths, which absorb or suck up what is superfluous, and return it back to the heart.

From what has been said, it must be evident that there is a considerable resemblance between the circulation of the blood in the animal body, and the circulation of the aqueous fluid on the surface of the globe. In the latter case the water is raised from the ocean, by the heat of the sun, and poured down upon the dry land, in minute drops, for the nourishment and economy of its different parts. What is superfluous is collected into little rills; these meeting with others, form brooks; the union of which produce rivers, that conduct the water to its original source, from which it is again circulated.

In the same manner, the blood is sent by the heart to different parts of the body, for the nourishment and economy of its different parts; what is superfluous is brought back by veins, which, continually uniting, form those large trunks, which convey the vital fluid to the heart.

The blood does not circulate, however, in the manner which I have mentioned, in all parts of the body; for that which is carried by arteries to the viscera, serving for digestion, such as the stomach, bowels, mesentery, omentum, and spleen, is collected by small veins which unite into a large trunk called the vena portarum; this vein enters the liver, and is subdivided in it like an artery, distributing through the liver a great quantity of blood, from which the bile is secreted: and, having served this purpose, the blood is collected by small veins; these unite and form the hepatic vein, which pours the blood into the vena cava, to be conducted to the heart.

The reason of this deviation, is probably, to diminish the velocity of the blood in the liver, for the secretion of the bile; which could not have been effected by means of an artery.

The force which impels the blood, is, first, the contraction of the heart, which propels the blood into the arteries with great velocity; but this is not the only force concerned in keeping up the circulation; this is evident, from the diminished heat, and weakened pulse, in a paralytic limb, which ought not to take place, if the blood were propelled merely by the action of the heart.

The arteries are possessed of an elastic and muscular power, by means of which they contract when they are distended or stimulated. It is however by the muscular power alone, that they assist in propelling the blood; for the elasticity of their coats can serve no other purpose than preserving the mean diameter of the vessel. If we suppose the arteries to be dilated by the blood, poured into them by the heart, they will, by their contraction, as elastic tubes, undoubtedly propel the blood: but supposing them to be perfectly elastic, the force of the heart will be just as much diminished in dilating them as the force of the blood is increased by their contraction. We are not however acquainted with any substance perfectly elastic, or which restores itself with a force equal to that with which it was distended: hence the elastic power of the arteries will subtract from, instead of adding to, the power of the heart. It is evident, therefore, that it must be by the muscular power of the arteries, which causes them to contract like the heart, that they propel the blood.

That such is the case, appears from the muscular structure of the arteries observed by anatomists; as also from the effects of mechanical irritation of their coats, which causes them to contract; this is likewise evident from the inflammation produced by the application of stimulating substances to particular parts; for instance, cantharides and mustard. It appears likewise, from the secretion in some parts being preternaturally increased, while the motion of the general mass of the blood continues unaltered.

The contraction of the arteries always propels the blood towards the extreme parts of the body: this must necessarily happen, because the valves at the origin of the arteries prevent its return to the heart, it must therefore move in the direction in which it finds least resistance.

If it were not for this muscular power of the arteries, the force of the heart would not alone be able to propel the blood to the extreme parts of the body, and overcome the different kinds of resistance it has to encounter. Among the causes that lessen the velocity of the blood, may be mentioned the increasing area of the artery; for it was before observed, that the sum of the cavities of the branches from any trunk exceeded the cavity of the trunk: and from the principles of hydrostatics, the velocities of fluids, propelled by the same force, in tubes of different diameters, are inversely as the squares of the diameters, so that in a tube of double the diameter, the velocity will only be one fourth; in one of the triple, only one ninth: and since the arteries may be looked upon as conical, it is evident that the velocity of the blood must be diminished from this cause.

The curvilinear course of the arteries likewise gives considerable resistance; for at every bending the blood loses part of its momentum against the sides; and this loss is evidently proportioned to the magnitude of the angle, at which the branch goes off. Convolutions are frequently made, in order to diminish the force of the blood in particular organs; this is especially the case with the carotid artery before it enters the brain.

The angles which the ramifications of the arteries make, are greater or more obtuse nearer the heart, and more acute as the distance increases; by which means the velocity of the blood is rendered more equal in different parts.

The anastomosing or union of different branches of arteries, likewise retards the velocity of the blood, the particles of which, from different vessels, impinging, disturb each other's motion, and produce a compound force, in which there is always a loss of velocity: and it is evident, from the composition of forces, that this loss must be proportioned to the obliquity of the angle at which the vessels unite.

The adhesion of the blood to the sides of the vessels, likewise causes a loss of velocity in the minuter branches, which may be owing to a chemical affinity: the viscidity or imperfect fluidity of the blood is another retarding cause. All these causes united, would render it impossible for the heart to propel the blood with the velocity with which it moves in the very minute branches of the arteries, if these arteries were not endowed with a living muscular power like the heart, by which they contract and propel their contents.

In the veins, the motion of the blood is occasioned partly by the vis a tergo, and partly by the contraction of the neighbouring muscles, which press upon the veins; and these veins being furnished with valves, the return of the blood towards the arteries is prevented; it must therefore move towards the heart.

That the contraction of the muscles of the body tends very much to promote the circulation of the blood, is evident, from the increase of the circulation from exercise, and likewise from the languid motion of the blood in sedentary persons, and those given to indolence. Hence we may account for the different diseases to which such persons are subject, and know how to apply the proper remedies. Hence likewise, we see the reason why rest is so absolutely necessary in acute and inflammatory diseases, where the momentum of the blood is already too great.

It has been doubted by anatomists, whether the veins were possessed with muscular power; but this seems now to be confirmed. Haller found the vena cava near the heart to contract on the application of stimulants, though he could see no muscular fibres; these, however, have been discovered by succeeding anatomists.

The magnitude of the veins is always greater than that of the corresponding arteries; hence the velocity of the blood must be less in the veins; and hence likewise we may account for their want of pulsation; for the action of the heart upon the arteries is at first very great; but as we recede from the heart, this effect becomes less perceptible; the arterial tube increases both in size and muscularity, in proportion to its distance from the source of circulation. The powers of the heart are spent in overcoming the different resistances which I have noticed, before the blood enters the veins; hence the blood will flow uniformly in these last.

The blood is subject in the veins to retarding causes, similar to those which operate in the arteries, but perhaps not in an equal degree; for the flexures are less frequent in the veins than in the arteries. As the capacity of the arterial tube increases with its distance from the heart, the velocity, from this cause, as has already been observed, is continually diminished; but a contrary effect takes place in the veins; for the different branches uniting, form trunks, whose capacities are smaller than the sums of the capacities of the branches, hence the velocity of the blood in the veins will increase as it approaches the heart.

Another retarding cause may be mentioned, namely, gravity, which acts more on the venous than the arterial system. The effects of gravity on the veins may be exemplified, by a ring being pulled off the finger with ease when the hand is elevated; also by the swellings of the feet that occur in relaxed habits, which swellings increase towards night, and subside in the morning, after the body has been in a horizontal posture for some hours.

In weak persons, the frequency of the pulse is increased by an erect posture, which may probably depend on gravity; as we know, from the observations of Macdonald and others, that an erect posture will make a difference of 15 or 20 beats in a minute. The experiments alluded to, were made by gently raising a person fastened to a board, where there being no muscular exertion, respiration would not be increased; so that the whole effect was probably owing to gravity accelerating the column of arterial blood.

The inverted posture produces a still more remarkable effect in accelerating the pulse, than the erect, for it sometimes causes it to beat 10 or 12 times more in the former case than in the latter.

While we are on this subject, it may not be improper to take notice of the effects of swinging on the circulation, which have been found by Dr. Carmichael Smyth, and others, to diminish the strength and velocity to such a degree, as to bring on fainting. These effects have never been satisfactorily accounted for; but they would seem to admit of an easy explanation on mechanical principles: they are undoubtedly owing, at least in a great measure, to the centrifugal force acquired by the blood.

By a centrifugal force, I mean, the tendency which revolving bodies have to fly off from the centre, which arises from their tendency to move in a straight line, agreeably to the laws of motion. Hence a tumbler of water may be whirled in a circle vertically without spilling it; the centrifugal force pushing the water against the bottom of the tumbler. In the same manner when the human body is made to revolve vertically in the arch of a circle, this centrifugal force will propel the blood from the head and heart towards he extremities; hence the circulation of the blood will be weakened, and the energy of the brain diminished. The contrary, however, will take place on a horizontal swing, as I have frequently observed, both on myself and others; for the centrifugal force in this case will propel the blood from the extremities towards the head.

It has been already observed, that the pulsations of the artery which we feel at the wrist, are occasioned by its alternate dilatations and contractions, which vary according to the strength and regularity of the circulation, which is liable to be affected by the smallest changes in the state of health. Hence physicians make use of the pulse as a criterion whereby to judge of the health of the body. And we may observe that there are few more certain characteristics of the state of the body than the pulse; yet the conclusions that have been drawn from it have often been erroneous; and this has arisen from trusting to observation without the aid of reason.

That we may better understand the phenomena of the pulse, I shall lay down the following postulata. 1st. It is now generally believed, that every part of the arterial system is endowed with irritability, or a power of contracting on the application of a stimulus, and that the blood acting on this contractibility, if the term may be allowed, causes contraction; and that the alternate relaxation and contraction gives the phenomenon pulsation. 2d. The greater the action of the stimulus of the blood, the greater will be the contraction, that is, the nearer will the sides of the artery approach towards the axis. 3d. That the velocity with which a muscular fibre, in a state of debility, contracts, is at least equal to that with which a fibre in a state of strength contracts, is a fact generally allowed by physiologists.

We shall afterwards see, that a deficient action of stimulus on the vessels may arise, either directly from diminishing the quantity of blood contained in them, or indirectly, from the application of too great a stimulant power, which has diminished the capability of contracting inherent in the vessels.

From these postulata, it will be evident, that the greater the action of the arteries, that is, the more powerful their contraction, the longer will be the intervals between the pulsations.

For the velocity being at least equal in debility and in strength, the times between the pulsations will be proportioned to the approach of the sides of the artery towards its axis: but the approach of the sides towards the axis is greater when the arteries are in a state of vigour than when debilitated; consequently the intervals between the pulsations will be greater when the arteries are in a state of vigour than when debilitated.

Hence it is evident, that a frequency of pulse must generally indicate a diminished action or debility; while a moderate slowness indicates a vigorous or just action.

Hence likewise the opinion of increased action, which has been supposed to take place in fevers, because a frequent pulse was observed, must be false, because the frequency arises from a directly opposite state, and indicates a diminished action of the vascular system.

In a sound and adult man the frequency of the pulse is about seventy beats in a minute; and in an infant, within the first five or six months, the pulse is seldom less than one hundred and twenty, and diminishes in frequency as the child grows older. But though seventy beats in the minute may be taken as a general standard; yet in persons of irritable constitutions the frequency is greater than this, and many, who are in the prime of life, have the pulse only between fifty and sixty.

It is generally observed, that the pulse is slower in the morning, that it increases in frequency till noon, after dinner it again becomes slow, and in the evening its frequency returns, which increases till midnight.

These phenomena may be rationally explained on the principles just laid down. When we rise in the morning, the contractibility being abundant, the stimulus of the blood produces a greater effect, the pulse becomes slow, and the contractions strong; it becomes more frequent, however, till dinner time, from a diminished contractibility; after dinner, from the addition of the stimulus of food and chyle, it again decreases in frequency, and becomes slow till the evening, when its frequency returns, because the contractibility becomes exhausted: and this frequency continues till the vital power have been recruited by sleep.

By the same principles it is easy to explain the quickness of the pulse in infancy, its gradual decrease till maturity, its slowness and strength during the meridian of life, and the return of its frequency during the decline.

Having now described the phenomena of the circulation, it will be proper to examine the changes produced by this function on the blood; and, in the first place, it may be observed, that the blood which returns by the vena cava to the heart, is of a dark colour inclining to purple; while that which passes from the left ventricle into the arteries, is of a bright vermilion hue. The blood which is found in the pulmonary artery has the same dark purple colour with that in the vena cava, while that in the pulmonary vein resembles the aortal blood in its brightness. Hence it would appear, that the blood, during its passage through the lungs, has its colour changed from a dark purple to a bright vermilion, in which state it is brought by the pulmonary vein to the left auricle of the heart; this auricle, contracting, expels the blood into the corresponding ventricle, by whose action, and that of the arteries, it is distributed to all parts of the body. When it returns, however, by the veins, it is found to have lost its fine bright colour. It would appear, therefore, that the blood obtains its red colour during its passage through the lungs, and becomes deprived of it during its circulation through the rest of the body.

That the blood contains iron, may be proved by various experiments: if a quantity of blood be exposed to a red heat in a crucible, the greatest part will be volatilised and burnt; but a quantity of brown ashes will be left behind, which will be attracted by the magnet. If diluted sulphuric acid be poured on these ashes, a considerable portion of them will dissolve; if into this solution we drop tincture of galls, a black precipitate will take place, or if we use prussiate of potash, a precipitate of prussian blue will be formed. These facts prove, beyond doubt, that a quantity of iron exists in the blood.

I shall not now particularly inquire how it comes there; it may partly be taken into the blood along with the vegetable and animal food, which is received into the stomach; for the greatest part of the animal and vegetable substances, which we receive as food, contain a greater or less quantity of iron. Or it may be partly formed by the animal powers, as would appear from the following circumstance. The analysis of an egg, before incubation, affords not the least vestige of iron, but as soon as the chick exists, though it has been perfectly shut up from all external communication, if the egg be burnt, the ashes will be attracted by the magnet.

But, however we may suppose the blood to obtain its iron, it certainly does contain it; if the coagulable lymph and serum of the blood be carefully freed from the red particles, by repeated washing, the strictest analysis will not discover in either of them a particle of iron, while the red globules thus separated will be found to contain a considerable quantity of this metal.

That the red colour of the blood depends upon iron, appears likewise from the experiments of Menghini, which show, that the blood of persons who have been taking chalybeate medicines for some time, is much more florid that it is naturally; the same is agreeable to my own observation. A late analysis, by Fourcroy, has likewise proved, that the red colour of the blood resides in the iron; but, though the red colour of the blood may reside in the iron which it contains, we shall find that this colour is likewise connected with oxidation.

If the dark coloured blood, drawn from the veins, be put under a vessel containing oxygen gas, its surface will immediately become florid, while the bulk of the gas will be diminished. Mr. Hewson enclosed a portion of a vein between two ligatures, and injected into it a quantity of oxygen gas; the blood, which was before dark coloured, instantly assumed the hue of arterial blood. Thuvenal put a quantity of arterial blood under the receiver of an air pump; on exhausting the air it became of the dark colour of venous blood; on readmitting the air, it became again florid. He put it under a receiver filled with oxygen gas, and found the florid colour much increased.

Dr. Priestly exposed the blood of a sheep successively to oxygen gas, atmospheric air, and carbonic acid gas; and found, that in oxygen gas its colour became very florid, less so in atmospheric air, and in carbonic acid gas it became quite black. He filled a bladder with venous blood, and exposed it to oxygen gas; the surface in contact with the bladder immediately became florid, while the interior parts remained dark coloured.

All these facts prove, that the red colour which the blood acquires in the lungs, is owing to the oxygen, which probably combines with it, and the last mentioned fact shows, that oxygen will act on the blood, even though a membrane similar to the bladder, be interposed between them.

The same effect, probably, takes place in the lungs; the blood is circulated through that organ by a number of fine capillary arteries; and it is probable that the oxygen acts upon the blood through the membranes of these arteries, in the same manner that it does through the bladder.

In short, it seems likely, that the blood, during its circulation through the lungs, becomes combined with oxygen; that this oxidated blood, on its return to the heart, is circulated by the arteries to all parts of the body; and that, during this circulation, its oxygen combines with the hydrogen and carbon of the blood, and perhaps with those parts of the body with which it comes into contact; it is therefore brought back to the heart, by the veins, of a dark colour, and deprived of the greatest part of its oxygen.

This is the most probable theory, in the present state of our knowledge; it was proposed by Lavoisier, who imagines the focus of heat, or fireplace to warm the body, to be in the lungs: others, however, have thought it more consonant to facts, to suppose, that, instead of the oxygen uniting with carbon and hydrogen in the lungs, and there giving out its heat, the oxygen is absorbed by the blood, and unites with these substances during the circulation, so that heat is produced in every part of the body; and this doctrine seems certainly supported by several facts and experiments.

The circulation of the blood, though so simple and beautiful a function, was unknown to the ancient physicians, and was first demonstrated by our countryman, Harvey; when he first published his account of this discovery, he met with the treatment which is generally experienced by those who enlighten and improve the comfort of their fellow creatures, by valuable discoveries. The novelty and merit of this discovery drew upon him the envy of most of his contemporaries in Europe, who accordingly opposed him with all their power; and some universities even went so far, as to refuse the honours of medicine to those students, who had the audacity to defend this doctrine; but afterwards, when they could not argue against truth and conviction, they attempted to rob him of the discovery, and asserted that many of the ancient physicians, and particularly Hippocrates, were acquainted with it. Posterity, however, who can alone review subjects of controversy without prejudice, have done ample justice to his memory.

LECTURE IV. DIGESTION, NUTRITION, &c.

The human body, by the various actions to which it is subject, and the various functions which it performs, becomes, in a short time, exhausted; the fluids become dissipated, the solids wasted, while both are continually tending towards putrefaction. Notwithstanding which, the body still continues to perform its proper functions, often for a considerable length of time; some contrivance, therefore, was necessary to guard against these accelerators of its destruction. There are two ways in which the living body may be preserved; the one by assimilating nutritious substances, to repair the loss of different parts; the other to collect, in secretory organs, the humours secreted from these substances.

We are admonished of the necessity of receiving substances into the body, to repair the continual waste, by the appetites of hunger and thirst. For the stomach being gradually emptied of its contents, and the body, in some degree, exhausted by exercise, we experience a disagreeable sensation in the region of the stomach, accompanied by a desire to eat, at first slight, but gradually increasing, and at last growing intolerable, unless it be satisfied.

When the fluid parts have been much dissipated, or when we have taken, by the mouth, any dry food, or acrid substance, we experience a sensation of heat in the fauces, and at the same time a great desire of swallowing liquids. The former sensation is called hunger, and the latter thirst.

From the back part of the mouth passes a tube, called the oesophagus or gullet, its upper end is wide and open, spread behind the tongue to receive the masticated aliment: the lower part of this pipe, after it has passed through the thorax, and pierced the diaphragm, enters the stomach, which is a membranous bag, situated under the left side of the diaphragm: its figure nearly resembles the pouch of a bagpipe, the left end being most capacious; the upper side is concave, and the lower convex: it has two orifices, both on its upper part; the left, which is a continuation of the oesophagus, and through which the food passes into the stomach, is named cardia; and the right, through which the food is conveyed out of the stomach, is called pylorus: within this last orifice is a circular valve, which, in some degree, prevents the return of the aliment into the stomach.

From the pylorus, or right orifice of the stomach, arise the intestines, or bowels, which consist of a long and large tube, making several circumvolutions, in the cavity of the abdomen; this tube is about five or six times as long as the body to which it belongs. Though it is one continued pipe, it has been divided, by anatomists, into six parts, three small, three large. The three small intestines are the duodenum, the jejunum, and the ileum; the duodenum commences at the pylorus, and is continued into the jejunum, which is so called from its being generally found empty: the ileum is only a prolongation of the jejunum, and terminates in the first of the great intestines, called the caecum. The other great guts are the colon and the rectum.

The whole of what has been described is only a production of the same tube, beginning at the oesophagus. It is called by anatomists the intestinal canal, or prima via, because it is the first passage of the food. It has circular muscular fibres, which give it a power of contracting when irritated by distension; and this urges forward the food which is contained in it. This occasions a worm like motion of the whole intestines, which is called their peristaltic motion.

The mesentery is a membrane beginning loosely on the loins, and thence extending to all the intestines; which it preserves from twisting by their peristaltic motion. It serves also to sustain all the vessels going to and from the intestines, namely the arteries, veins, lacteals, and nerves; it also contains several glands, called, from their situation, mesenteric glands.

The lacteal vessels consist of a vast number of fine pellucid tubes, which arise by open mouths from the intestines, and proceeding thence through the mesentery, they frequently unite, and form fewer and larger vessels, which pass through the mesenteric glands, into a common receptacle or bag, called the receptacle of the chyle. The use of these vessels is to absorb the fluid part of the digested aliment, called chyle, and convey it into the receptacle of the chyle, that it may be thence carried through the thoracic duct into the blood.

The receptacle of the chyle is a membranous bag, about two thirds of an inch long, and one third of an inch wide, at its superior part it is contracted into a slender membranous pipe, called the thoracic duct, because its course is principally through the thorax; it passes between the aorta and the vena azygos, then obliquely over the oesophagus, and great curvature of the aorta, and continuing its course towards the internal jugular vein, it enters the left subclavian vein on its superior part.

There are several other viscera besides those I have described, which are subservient to digestion; among these may be mentioned the liver, gall bladder, and pancreas. The liver is the largest gland in the body, and is situated immediately under the diaphragm, principally on the right side. Its blood vessels that compose it as a gland, are the branches of the vena portarum, which, as I mentioned in the last lecture, enters the liver and distributes its blood like an artery. From this blood the liver secretes the bile, which is conveyed by the hepatic duct, towards the intestines: before this duct reaches the intestines, it is joined by another, coming from the gall bladder: these two ducts uniting, form a common duct, which enters the duodenum obliquely, about four inches below the pylorus of the stomach.

The gall bladder, which is a receptacle of bile, is situated between the stomach and the liver; and the bile which comes from the liver, along the hepatic duct, partly passes into the duodenum, and partly along the cystic duct into the gall bladder. When the stomach is full, it presses on the gall bladder, which will squeeze out the bile into the duodenum at the time when it is most wanted.

The bile is a thick bitter fluid, of a yellowish green colour, composed chiefly of soda and animal oil, forming a soap; and it is most probably in consequence of this saponaceous property that it assists digestion, by causing the different parts of the food to unite together by intermediate affinity. When the bile is prevented from flowing into the intestines, by any obstruction in the ducts, digestion is badly performed, costiveness takes place, and the excrements are of a white colour, from being deprived of the bile. This fluid, stagnating in the gall bladder, is absorbed by the lymphatics, and carried into the blood, communicating to the whole surface of the body a yellow tinge, and other symptoms of jaundice.

The jaundice therefore is occasioned by an obstruction to the passage of the bile into the intestines, and its subsequent absorption into the blood: this obstruction may be caused either by concretions of the bile, called gall stones, or by a greater viscidity of the fluid, or by a spasm, or paralysis of the biliary ducts.

The pancreas, or sweet bread, is a large gland lying across the upper and back part of the abdomen, near the duodenum. It has a short excretory duct, about half as wide as a crow quill, which enters the duodenum at the same place where the bile duct enters it.

The food being received into the mouth, is there masticated or broken down, by the teeth, and impregnated with saliva, which is pressed out of the salivary glands, by the motions of the jaw and the muscles of the mouth. It then descends, through the oesophagus, into the stomach, where it becomes digested, and, in a great measure, dissolved, by the gastric juice, which is secreted by the arteries of the stomach. It is then pushed through the pylorus, or right orifice of the stomach into the duodenum, where it becomes mixed with the bile from the gall bladder and liver, and the pancreatic juice from the pancreas. These fluids seem to complete the digestion: after this, the food is continually moved forwards by the peristaltic motion of the intestines.

The chyle, or thin and milky part of the aliment, being absorbed by the lacteals, which rise, by open mouths, from the intestines, is carried into the receptacle of the chyle, and from thence the thoracic duct carries it to the subclavian vein, where it mixes with the blood, and passes with it to the heart.

The food of animals is derived from the animal or vegetable kingdoms. There are some animals which eat only vegetables, while others live only on animal substances. The number and form of the teeth, and the structure of the stomach, and bowels, determine whether an animal be herbivorous, or carnivorous. The first class have a considerable number of grinders, or dentes molares; and the intestines are much more long and bulky; in the second class, the cutting teeth are predominant, and the intestines are much shorter.

Man seems to form an intermediate link between these two classes: his teeth, and the structure of the intestines, show, that he may subsist both on vegetable and animal food; and, in fact, he is best nourished by a proper mixture of both. This appears from those people who live solely on vegetables, as the Gentoo tribes, and those who subsist solely on animals, as the fish eaters of the northern latitudes, being a feebler generation than those of this country, who exist on a proper mixture of both. A due proportion, therefore, of the two kinds of nourishment, seems undoubtedly the best.

Having taken a general view of the course of the aliment into the blood, I shall now examine more particularly, how each part of the organs concerned in digestion, or connected with that function, contributes to that end.

The food being received into the mouth, undergoes various preparations, which fit it for those changes it is afterwards to undergo. By the teeth the parts of it are divided and ground, softened and liquified by the saliva, and properly compressed by the action of the tongue and mastication.

The mouth, in most animals, is armed with very hard substances, which, by the motion of the lower jaw, are brought strongly into contact. Those parts of the teeth which are above the sockets, are not simply bony, they are much harder than the bones, and possess the property of resisting putrefaction, as long as this hard crust continues to cover them. The teeth are divided into three classes: 1st. The cutting teeth, which are sharp and thin, and which serve to cut or divide the food: 2nd. The canine teeth, which serve to tear it into pieces still smaller: 3rd. The grinders, which present large and uneven surfaces, and actually grind the substance already broken down by the other teeth. Birds, whom nature has deprived of teeth, have a strong muscular stomach, called the gizzard, which serves the purposes of teeth, and they even take into the stomach small pieces of grit, to assist in grinding to a powder the grain that they have swallowed.

Among those parts of the mouth which contribute to the preparation of the food, we must reckon the numerous glands which secrete saliva, and which have therefore been called salivary glands. The saliva is a saponaceous liquor, destitute of taste or smell, which is squeezed out from these glands, and mixed with the food during mastication. In the mouth, therefore, the food becomes first broken down by the teeth, impregnated with saliva, and reduced to a soft pasty substance, capable of passing with these, through the oesophagus, into the stomach. It is here that it undergoes the change, which is particularly termed digestion.

Digestion comprehends two classes of phenomena, distinct from each other: 1st. Physical and chemical: 2nd. Organic and vital. The object of the first, is to bring the alimentary substances to such a state as is necessary, that they may be capable of the new combinations into which they are to enter, to obtain the animal character. The object of the second is, to produce those combinations which some have thought to be very different from those produced by simple chemical attractions.

The physical and chemical phenomena of digestion, relate chiefly, 1st. To the action of heat; 2ndly. To the dissolution of the alimentary substances. The heat of the animal is such, as is well fitted to promote solution.

That digestion is performed by solution, is evident, from several experiments, particularly those made by Dr. Stevens, who enclosed different alimentary substances in hollow spheres of silver, pierced with small holes. These were swallowed, and after remaining some time in the stomach, the contents were found dissolved. The great agent of solution is the gastric juice, which possesses a very strong solvent power. This juice is secreted by the arteries of the stomach; it may be collected in considerable quantity, by causing an animal that has been fasting for some time, to swallow small hollow spheres, or tubes of metal filled with sponge.

This liquid does not act indiscriminately upon all substances; for if grains of corn be put into a perforated tube, and a granivorous bird be made to swallow it, the corn will remain the usual time in the stomach without alteration; whereas if the husk of the grain be previously taken off, the whole of it will be dissolved. There are many substances likewise which pass unaltered through the intestines of animals, and consequently are not acted upon by the gastric juice. This is the case frequently with grains of oats, when they have been swallowed by horses entire, with their husks on. This is the case likewise with the seeds of apples and other fruits, when swallowed entire by man; yet if these substances have been previously ground by the teeth, they will be digested. It would appear therefore, that it is chiefly the husk or outside of these substances which resists the action of the gastric juice.

This juice is not the same in all animals; for many animals cannot digest the food on which others live. Thus sheep live wholly on vegetables, and if they are made to feed on animals, their stomachs will not digest them: others again, as the eagle, feed wholly on animal substances, and cannot digest vegetables.

The accounts of the experiments made on gastric juice are very various: sometimes it has been found of an acid nature, at other times not. The experiments of Spallanzani show, however, that this acidity is not owing to the gastric juice, but to the food. The result of his experiments, which have been very numerous, prove, that the gastric juice is naturally neither acid nor alkaline. No conclusion, however, can be drawn from these experiments made out of the stomach, with respect to the nature of the gastric juice; nor do the analyses which have been made of it throw any light on its mode of action. But, from the experiments which have been made on digestion, in the stomach, particularly by Spallanzani, the following facts have been established.

The gastric juice attacks the surfaces of bodies, and combines chemically with their particles. It operates with more energy and rapidity, the more the food is divided, and its action increased by a warm temperature. By the action of digestion, the food is not merely reduced to very minute parts, but its chemical properties become changed; its sensible properties are destroyed, and it acquires new and very different ones. This juice does not act as a ferment; so far from it, it is a powerful antiseptic, and even restores flesh which is already putrid.

When the alimentary substances have continued a sufficient time in the stomach, they are pushed into the intestines, where they become mixed with the bile and pancreatic juice, as was before observed. What changes are caused by these substances, we have yet to learn; but there is no doubt, that they serve some important purposes. By the peristaltic motion of the bowels, the alimentary matters thus changed are carried along, and applied to the mouths of the lacteal vessels, which open into the intestines, like a sponge, and by some power, not well understood, absorb that part which is fitted for assimilation, while the remainder is rejected as an excrement.

The lacteal vessels are furnished with valves, which allow a free passage to the chyle from the intestines, but prevent its return. The most inexplicable thing in this operation, is the power which these vessels possess of selecting from the intestinal mass, those substances which are proper for nutrition, and rejecting those which are not.

These lacteal vessels, as was before observed, pass through the mesentery, and their contents seem to undergo some important change in the mesenteric glands. The chyle which passes through vessels, appears to be an oily liquor, less animalised than milk, and its particles seem to be held in solution by the intermedium of a mucilaginous principle. It is conveyed along the thoracic duct in the manner already described, and enters the blood slowly, and, as it were, drop by drop, by the subclavian vein; in this way it becomes intimately mixed with the blood, and combining with oxygen in the lungs, it acquires a fibrous character, and becomes fit to nourish the body.

We have now seen how the process of digestion is performed, at least, so far as we are acquainted with it, and how its products are conveyed into the blood. But to what purposes the blood is employed, which is formed with so much care, we have yet to discover. It seems to answer two purposes. The parts of which the body is composed, namely, bones, muscles, ligaments, membranes, &c. are continually changing: in youth they are increasing in size and strength, and in mature age they are continually acting, and, consequently, continually liable to waste and decay. They are often exposed to accidents, which render them unfit for performing their various functions; and even when no such accidents happen, it seems necessary for the health of the system that they should be perpetually renewed. Materials must therefore be provided for repairing, increasing, or renewing all the various organs of the body. The bones require phosphate of lime, and gelatine, the muscles fibrine, and the cartilages and membranes albumen; and accordingly we find all these substances contained in the blood, from whence they are drawn, as from a storehouse, whenever they are wanted. The process by which these different parts of the blood become various parts of the body is called assimilation.

Over the nature of assimilation the thickest darkness still hangs; all that we know for certain is, that there are some conditions necessary to its action, without which it cannot take place. These are, 1. A sound and uninterrupted state of the nerves. 2. A sound state of the blood vessels. 3. A certain degree of tone or vigour in the vessels of the part.

There remains yet to be noticed another set of vessels, connected with the circulating and nutritive systems, called lymphatics. These vessels are very minute, and filled with a transparent fluid: they rise by open mouths in every cavity of the body, as well as from every part of the surface, and the course of those from the lower extremities, and indeed from most of the lower parts of the body, is towards the thoracic duct, which they enter at the same time with the lacteal vessels already described. They are furnished, like the lacteals, with numerous valves, which prevent their contents from returning towards their extremities.

The minute arteries in every part of the body exhale a colourless fluid, for lubricating the different parts, and other important purposes: and the lymphatic vessels absorb the superfluous quantity of this fluid, and convey it back to the blood.

It must be evident therefore, that, if the lymphatics in any cavity become debilitated, or by any other means be prevented from absorbing this exhaled fluid, an accumulation of it will take place: the same will happen, if the exhaling arteries be debilitated, so as to allow a greater quantity of fluid to escape than the absorbents can take up. When the balance between exhalation and absorption is destroyed, by either or both of these means, a dropsy will be the consequence.

Before we finish the subject of digestion, I shall take a short view of some of the morbid affections, attending this important function of the animal economy.

A deficiency of appetite may arise, either from an affection of the stomach, or a morbid state of the body: for there is such a sympathy between the stomach and the rest of the system, that the first is very seldom disordered, without communicating more or less disorder to the system: nor can the system become deranged and the stomach remain sound.

A want of appetite may arise from overloading the stomach, whereby its digestive powers will be weakened. And this may be occasioned in two ways. First, by taking food of the common quality in too great quantity, which will certainly weaken the powers of the stomach. An excellent rule, and one which if more attended to, would prevent the dreadful consequences of indigestion, is always to rise from the table with some remains of appetite. This is a rule applicable to every constitution, but particularly to the sedentary and debilitated.

The second way in which the stomach may be debilitated, is by taking food too highly stimulating or seasoned; and this even produces much worse effects than an over dose with respect to quantity. The tone of the stomach is destroyed, and a crude unassimilated chyle is absorbed by the lacteals, and carried into the blood, contaminating its whole mass. Made dishes, enriched with hot sauces, stimulate infinitely more than plain food, and bring on diseases of the worst kind: such as gout, apoplexy, and paralysis. "For my part," says an elegant writer, "when I behold a fashionable table set out in all its magnificence, I fancy I see gouts, and dropsies, fevers, and lethargies, with other innumerable distempers, lying in ambuscade among the dishes."

All times of the day are not equally fitted for the reception of nourishment. That digestion may be well performed, the functions of the stomach and of the body must be in full vigour. The early part of the day therefore is the proper time for taking nutriment; and, in my opinion, the principal meal should not be taken after two or three o'clock, and there should always be a sufficient time between each meal to enable the stomach to digest its contents. I need not remark how very different this is from the common practice of jumbling two or three meals together, and at a time of the day likewise when the system is overloaded. The breakfast at sunrise, the noontide repast and the twilight pillow, which distinguished the days of Elizabeth, are now changed for the evening breakfast, and the midnight dinner. The evening is by no means the proper time to take much nourishment: for the powers of the system, and particularly of the stomach, are then almost exhausted, and the food will be but half digested. Besides, the addition of fresh chyle to the blood, together with the stimulus of food acting on the stomach, always prevents sleep, or renders it confused and disturbed, and instead of having our worn out spirits recruited, by what is emphatically called by Shakespeare, "the chief nourisher in life's feast," and rising in the morning fresh and vigorous, we become heavy and stupid, and feel the whole system relaxed.

It is by no means uncommon, for a physician to have patients, chiefly among people of fashion and fortune, who complain of being hot and restless all night, and having a bad taste in the mouth in the morning. On examination, I have found that, at least in nineteen cases out of twenty, this has arisen from their having overloaded their stomachs, and particularly from eating hot suppers; nor do I recollect a single instance of a complaint of this kind in any person not in the habit of eating such suppers.

The immoderate use of spirituous and fermented liquors, is still more destructive of the digestive powers of the stomach; but this will be better understood, when we have examined the laws by which external powers act upon the body. The remarks I have made could not, however, I think, have come in better, than immediately after our examination of the structure of the digestive organs, as the impropriety of intemperance, with respect to food, is thus rendered more evident.

The appetite becomes deficient from want of exercise, independently of the other causes that have been mentioned. Of all the various modes of preserving health, and preventing diseases, there is none more efficacious than exercise; it quickens the motion of the fluids, strengthens the solids, causes a more perfect sanguification in the lungs, and, in short, gives strength and vigour to every function of the body. Hence it is, that the Author of nature has made exercise absolutely necessary to the greater part of mankind for obtaining means of existence. Had not exercise been absolutely necessary for our well being, says the elegant Addison, nature would not have made the body so proper for it, by giving such an activity to the limbs, and such a pliancy to every part, as necessarily produce those compressions, extensions, contortions, dilatations, and all other kinds of motion, as are necessary for the preservation of such a system of tubes and glands.

We may, indeed, observe, that nature has never given limbs to any animal, without intending that they should be used. To fish she has given fins, and to the fowls of the air wings, which are incessantly used in swimming and flying; and if she had destined mankind to be eternally dragged about by horses, her provident economy would surely have denied them legs.

The appetite becomes deficient on the commencement of many diseases, but this is to be looked upon here rather as a salutary than as a morbid symptom, and as a proof that nature refuses the load, which she can neither digest nor bear with impunity.

In healthy people the appetite is various, some requiring more food than others; but it sometimes becomes praeternaturally great, and then may be regarded as a morbid symptom. The appetite may be praeternaturally increased, either by an unusual secretion of the gastric juice, which acts upon the coats of the stomach, or by any acrimony, either generated in, or received into the stomach, or, lastly, by habit, for people undoubtedly may gradually accustom themselves to take more food than is necessary.

The appetite sometimes becomes depraved, and a person thus affected, feels a desire to eat substances that are by no means nutritious, or even esculent: this often depends on a debilitated state of the whole system. There are some instances, however, in which this depravity of the appetite is salutary; for example, the great desire which some persons, whose stomachs abound with acid, have for eating chalk, and other absorbent earths: likewise, the desire which scorbutic patients have for grass, and other fresh vegetables. Appetites of this kind, if moderately indulged in, are salutary, rather than hurtful.

The appetite for liquids as well as solids is sometimes observed to be deficient, and sometimes too great. The former can scarcely be considered as a morbid symptom, provided the digestion and health be otherwise good. But when along with diminished thirst, the fauces and tongue are dry, this deficiency may be regarded as a morbid and dangerous symptom.

A more common morbid symptom, however, is too great thirst, which may arise from a deficiency of fluids in the body, produced by violent exercise, perspiration, too great a flow of urine, or too great an evacuation of the intestines. A praeternatural thirst may likewise arise from any acrid substance received into the stomach, which our provident mother, nature, teaches us to correct by dilution; this is the case with respect to salted meats, or those highly seasoned with pepper. It may arise also from the stomach being overloaded with unconcocted aliment, or from a suppressed or diminished secretion of the salivary liquors in the mouth, which may arise from fever, spasm, or affections of the mind; an increased thirst may likewise take place, from a derivation or determination of the fluids to other parts of the body; of this, dropsy affords an example. Indeed, various causes may concur to increase the thirst; this is the case in most fevers, where great thirst is occasioned by the dissipation of the fluids of the body by heat, as well as by the diminished secretion of the salivary humours which should moisten the mouth; to which may be added, the heat and diminished concoctive powers of the stomach.

From what has been said, we can easily understand, why praeternatural thirst may sometimes be a necessary instinct of nature, at other times, an unnecessary craving; why acids, acescent fruits, and weak fermented liquors quench thirst more powerfully than pure water; and lastly, why thirst, in some instances, may be relieved by emetics, when it has resisted other remedies.

There is no organ of the body whose functions are so easily deranged as those of the stomach; and these derangements prove a very fertile source of disease; they ought, therefore, carefully to be guarded against; and it is fortunate for us that we have this generally in our power, if we would but avail ourselves of it: for most of the derangements proceed from the improper use of food and drink, and a neglect of exercise. Indeed, when we examine, we shall find but a short list in the long catalogue of human diseases, which it is not in our power to guard against and prevent: and which surely will be guarded against, when their causes are known, and consequences understood.

Among the diseases arising from a disordered state of the stomach and indigestion, may be enumerated the following: great oppression and anxiety, pain in the region of the stomach, with acid eructations, nausea, vomiting, the bowels sometimes costive, sometimes too loose, but seldom regular, depression of spirits, and all the long list, commonly, but very improperly, termed nervous complaints, deficient nutrition, and consequently general weakness, a relaxed state of the solids, too great a tenuity of the fluids, headach, vertigo, and many other complaints, too numerous to mention here.

The greatest misfortune, and which indeed arises from a want of physiological knowledge, is, that people labouring under these disorders, imagine they may be cured by the reception of drugs into the stomach, and thus they are induced to receive into that organ, half the contents of an apothecary's shop. There is no doubt that these complaints may oftentimes be alleviated, and the cure assisted, by medicines: thus, when the stomach is overloaded, this may be removed by an emetic; the same complaint of the bowels may be removed by a cathartic; and when the stomach is debilitated, we are acquainted with some substances which will give it vigour, such as iron, the Peruvian bark, and several kinds of bitters. These however, when used alone, afford but temporary relief; and unless the cause which induced the disease be removed, it will afterwards return with redoubled violence. When the stomach, for instance, is debilitated by want of exercise, I would ask, is there an article in the whole materia medica, that can cure the complaints of sedentary people, unless proper exercise at the same time be taken? With exercise tonic remedies will undoubtedly accelerate the cure, but without it, they will only make bad worse.

Again, when the stomach is debilitated by the use of improper food, or the abuse of fermented or spirituous liquors, I would say to any one who pretended to cure me of these complaints, without my making a total change in the manner of living, that he either was ignorant of the matter, or intended to deceive me.

In many cases the change of food must be strictly observed and persevered in for a long time before a cure can be effected. In some instances where the powers of the stomach were too weak to prevent the food from undergoing perhaps both a vinous and acetous fermentation, and where, in consequence of the disengagement of gas and the formation of acid, the most excruciating pains were felt, the most dreadful sickness experienced, and all the symptoms of indigestion present in the most aggravated state; after almost every article in the materia medica, generally employed, had been tried without success, I have cured the patient merely by prohibiting food subject to fermentation, such as vegetables, and enjoining a strict use of animal food alone.

In short, wherever the cause of a disease can be ascertained, the grand and simple secret in the cure, is the careful removal of that cause.

LECTURE V. OF THE SENSES IN GENERAL.

In this lecture, I propose to take a view of the connexion of man with the external world, and shall endeavour to point out the manner in which he becomes acquainted with external objects, by means of the faculties called senses.

A human creature is an animal endowed with understanding, and reason; a being composed of an organized body, and a rational mind.

With respect to his body, he is pretty similar to other animals, having similar organs, powers, and wants. All animals have a body composed of several parts, and, though these may differ from the structure of the human body in some circumstances, to accommodate it to peculiar habits and wants of the animal, still there is a great similarity in the general structure.

The human body is feeble at its commencement, increases gradually in its progress by the help of nourishment and exercise, till it arrives at a certain period, when it appears in full vigour; from this time it insensibly declines to old age, which conducts it at length to dissolution. This is the ordinary course of human life, unless it happens to be abridged either by disease or accident.

With regard to his reasoning faculties, or mind, man is eminently distinguished from other animals. It is by this noble part that he thinks, and is capable of forming just ideas of the different objects that surround him: of comparing them together; of inferring from known principles unknown truths; of passing a solid judgment on the mutual agreement of things, as well as on the relations they bear to him; of deliberating on what is proper or improper to be done; and of determining how to act. The mind recollects what is past, joins it with the present, and extends its views to futurity. It is capable of penetrating into the causes of events, and discovering the connexion that exists between them.

Governed by invariable laws, which connect him with all the beings, whether animate or inanimate, among which he exists, man has certain relations of convenience, and inconvenience, arising from the particular constitution of the surrounding objects, as well as of his own body. These external objects possess qualities which may be useful or prejudicial to him; and his interest requires, that he should be capable of ascertaining and appreciating these properties.

It is by sensation, or feeling, that the knowledge of external objects is obtained. The faculty of feeling, modified in every organ, perceives those qualities for which the peculiar structure of the organ is fitted; and all the various sensations of sound, colour, taste, smell, resistance, and temperature, find appropriate organs by which they are perceived, without mixing with, or confounding each other. External objects, therefore, act upon the parts of the body endowed with feeling, and their action is diversified in such a manner, as to give us a great number of sensations, which appear to have no resemblance to each other, and which make us acquainted with the various properties of surrounding objects.

It would not, however, have been sufficient for man, merely to have possessed this power of perceiving the different properties of the objects which surround him: it was necessary likewise, that he should be possessed of motion, that he might be able to approach or avoid them, to seize or repulse them, as it suited his convenience or advantage. By the extreme mobility of his limbs, he is able to move his body, and transport it from place to place; to bring external objects nearer to him, to remove them to a greater distance, and to place them in such situations and such circumstances, as may enable them to act on each other, and produce the changes which he wishes.

The human body, therefore, may be regarded as a machine composed (besides the moving parts which have formerly been noticed) of divers organs upon which external objects act, and produce those impressions which convince us of their presence, and make us acquainted with their properties. These impressions are transmitted to the sentient principle, or mind; and the faculty we possess of perceiving these impressions has been called by physiologists, sensibility.

Sensation has generally been defined by metaphysicians to be a change in the mind, of which we are conscious, caused by a correspondent change in the state of the body. This definition, however, leaves the matter where they found it, and throws no light whatever on the nature of sensation; nor can we say any thing more concerning it, than that, when the organs are in a sound state, certain sensations are perceived, which force us to believe in the existence of external objects, though there is no similarity whatever, nor any necessary connexion, that we can perceive, between the sensation and the object which caused it.

All the different degrees of sensation may be reduced to two kinds: pleasant and painful. The nature of these two primitive modes of sensation, is as little known to us as their different species: all that can be said, is, that the general laws by which the body is governed, are such, that pleasure is generally connected with those impressions which tend to its preservation, and pain with those which cause its destruction.

In a general point of view, sensibility may be regarded as an essential property of every part of the living body, disposing each part to perform those functions, the object of which is to preserve the life of the animal. Sensibility presides over the most necessary functions, and watches carefully over the health of the body: she directs the choice of the air proper for respiration, and also of alimentary substances; the mechanism of the secretions is likewise placed under her power; and in the same way that the eye perceives colours, and the ear sounds, so every animated and living part is fitted to receive impressions from the objects appropriated to it.

That every part of the animal is endowed with sensibility, is evident from a variety of facts, particularly from the action which follows when a muscle taken out of the animal body is irritated by any stimulus: this is evident, by a variety of facts mentioned by Whytt, Boerhaave, and others, which show, that parts recently taken from the animal body retain a portion of sensibility, which continues to animate them, and render them capable of action for a considerable time.

The primary organ of sensation appears to be the brain, its continuation in the form of medulla oblongata and spinal marrow, and the various nerves proceeding from these; and it seems now generally agreed, that unless there be a free communication of nerves between the part where the impression is made, and the brain, no sensation will take place; for instance, if the nerves be cut or compressed.

Previous Part     1  2  3  4  5  6  7     Next Part
Home - Random Browse