p-books.com
Organic Gardener's Composting
by Steve Solomon
Previous Part     1  2  3  4  5
Home - Random Browse

Temperature Range in Normal Pit

Age in days Temperature in degree C

3 63 4 60 6 58 11 55 12 53 13 49 14 49

First Turn

18 49 20 51 22 48 24 47 29 46

Second Turn

37 49 38 45 40 40 43 39 57 39

Third Turn

61 41 66 39 76 38 82 36 90 33

Period in days for each fall of 5i C

Temperature Range No. of Days

65 degree-60 degree 4 60 degree-55 degree 7 55 degree-50 degree 1 50 degree-45 degree 25 45 degree-40 degree 2 40 degree-35 degree 44 35 degree-30 degree 14

Total 97 days

Turning

Turning the compost was done three times: To insure uniform decomposition, to restore moisture and air, and to supply massive quantities of those types of microbes needed to take the composting process to its next stage.

The first turn was at about sixteen days. A second mass inoculation equivalent to a few wheelbarrows full of 30 day old composting material was taken from an adjacent pit and spread thinly over the surface of the pit being turned. Then, one half of the pit was dug out with a manure fork and placed atop the first half. A small quantity of water was added, if needed to maintain moisture. Now the compost occupied half the pit, a space about 15 x 14 and was about three feet high, rising out of the earth about one foot. During the monsoons when heaps were used, the above-ground piles were also mass inoculated and then turned so as to completely mix the material, and as we do today, placing the outside material in the core and vice-versa.

One month after starting, or about two weeks after the first turn, the pit or heap would be turned again. More water would be added. This time the entire mass would be forked from one half the pit to the other and every effort would be made to fluff up the material while thoroughly mixing it. And a few loads of material were removed to inoculate a 15-day-old pit.

Another month would pass, or about two months after starting, and for the third time the compost would be turned and then allowed to ripen. This time the material is brought out of the pit and piled atop the earth so as to increase aeration. At this late stage there would be no danger of encouraging high temperatures but the increased oxygen facilitated nitrogen fixation. The contents of several pits might be combined to form a heap no larger than 10 x 10 at the base, 9 x 9 on top, and no more than 3-1/2 feet high. Again, more water might be added. Ripening would take about one month. Howard's measurements showed that after a month's maturation the finished compost should be used without delay or precious nitrogen would be lost. However, keep in mind when considering this brief ripening period that the heap was already as potent as it could become. Howard's problem was not further improving the C/N, it was conservation of nitrogen.

The Superior Value of Indore Compost.

Howard said that finished Indore compost was twice as rich in nitrogen as ordinary farmyard manure and that his target was compost with a C/N of 10:1. Since it was long manure he was referring to, let's assume that the C/N of a new heap started at 25:1.

The C/N of vegetation collected during the year is highly variable. Young grasses and legumes are very high in nitrogen, while dried straw from mature plants has a very high C/N. If compost is made catch-as-catch-can by using materials as they come available, then results will be highly erratic. Howard had attempted to make composts of single vegetable materials like cotton residues, cane trash, weeds, fresh green sweet clover, or the waste of field peas. These experiments were always unsatisfactory. So Howard wisely mixed his vegetation, first withering and drying green materials by spreading them thinly in the sun to prevent their premature decomposition, and then taking great care to preserve a uniform mixture of vegetation types when charging his compost pits. This strategy can be duplicated by the home gardener. Howard was surprised to discover that he could compost all the crop waste he had available with only half the urine earth and about one-quarter of the oxen manure he had available. But fresh manure and urine earth were essential.

During the 1920s a patented process for making compost with a chemical fertilizer called Adco was in vogue and Howard tried it. Of using chemicals he said:

"The weak point of Adco is that it does nothing to overcome one of the great difficulties in composting, namely the absorption of moisture in the early stages. In hot weather in India, the Adco pits lose moisture so rapidly that the fermentation stops, the temperature becomes uneven and then falls. When, however, urine earth and cow-dung are used, the residues become covered with a thin colloidal film, which not only retains moisture but contains combined nitrogen and minerals required by the fungi. This film enables the moisture to penetrate the mass and helps the fungi to establish themselves. Another disadvantage of Adco is that when this material is used according to the directions, the carbon-nitrogen ratio of the final product is narrower than the ideal 10:1. Nitrogen is almost certain to be lost before the crop can make use of it"

Fresh cow manure contains digestive enzymes and living bacteria that specialize in cellulose decomposition. Having a regular supply of this material helped initiate decomposition without delay. Contributing large quantities of actively growing microorganisms through mass inoculation with material from a two-week-old pile also helped. The second mass inoculation at two weeks, with material from a month-old heap provided a large supply of the type of organisms required when the heap began cooling. City gardeners without access to fresh manure may compensate for this lack by imitating Howard's mass inoculation technique, starting smaller amounts of compost in a series of bins and mixing into each bin a bit of material from the one further along at each turning. The passive backyard composting container automatically duplicates this advantage. It simultaneously contains all decomposition stages and inoculates the material above by contact with more decomposed material below. Using prepared inoculants in a continuous composting bin is unnecessary.

City gardeners cannot readily obtain urine earth. Nor are American country gardeners with livestock likely to be willing to do so much work. Remember that Howard used urine earth for three reasons. One, it contained a great deal of nitrogen and improved the starting C/N of the heap. Second, it is thrifty. Over half the nutrient content of the food passing through cattle is discharged in the urine. But, equally important, soil itself was beneficial to the process. Of this Howard said, "[where] there may be insufficient dung and urine earth for converting large quantities of vegetable wastes which are available, the shortage may be made up by the use of nitrate of soda . . . If such artificials are employed, it will be a great advantage to make use of soil." I am sure he would have made very similar comments about adding soil when using chicken manure, or organic concentrates like seed meals, as cattle manure substitutes.

Control of the air supply is the most difficult part of composting. First, the process must stay aerobic. That is one reason that single-material heaps fail because they tend to pack too tightly. To facilitate air exchange, the pits or heaps were never more than two feet deep. Where air was insufficient (though still aerobic) decay is retarded but worse, a process called denitrification occurs in which nitrates and ammonia are biologically broken down into gasses and permanently lost. Too much manure and urine-earth can also interfere with aeration by making the heap too heavy, establishing anaerobic conditions. The chart illustrates denitrification caused by insufficient aeration compared to turning the composting process into a biological nitrate factory with optimum aeration.

Making Indore Compost in Deep and Shallow Pits

Pit 4 feet deep Pit 2 feet deep Amount of material (lb. wet) in pit at start 4,500 4,514 Total nitrogen (lb) at start 31.25 29.12 Total nitrogen at end 29.49 32.36 Loss or gain of nitrogen (lb) -1.76 +3.24 Percentage loss or gain of nitrogen -6.1% +11.1%

Finally, modern gardeners might reconsider limiting temperature during composting. India is a very warm climate with balmy nights most of the year. Heaps two or three feet high will achieve an initial temperature of about 145 degree. The purchase of a thermometer with a long probe and a little experimentation will show you the dimensions that will more-or-less duplicate Howard's temperature regimes in your climate with your materials.

Inoculants

Howard's technique of mass inoculation with large amounts of biologically active material from older compost heaps speeds and directs decomposition. It supplies large numbers of the most useful types of microorganisms so they dominate the heap's ecology before other less desirable types can establish significant populations. I can't imagine how selling mass inoculants could be turned into a business.

But just imagine that seeding a new heap with tiny amounts of superior microorganisms could speed initial decomposition and result in a much better product. That could be a business. Such an approach is not without precedent. Brewers, vintners, and bread makers all do that. And ever since composting became interesting to twentieth-century farmers and gardeners, entrepreneurs have been concocting compost starters that are intended to be added by the ounce(s) to the cubic yard.

Unlike the mass inoculation used at Indore, these inoculants are a tiny population compared to the microorganisms already present in any heap. In that respect, inoculating compost is very different than beer, wine, or bread. With these food products there are few or no microorganisms at the start. The inoculant, small as it might be, still introduces millions of times more desirable organisms than those wild types that might already be present.

But the materials being assembled into a new compost heap are already loaded with microorganism. As when making sauerkraut, what is needed is present at the start. A small packet of inoculant is not likely to introduce what is not present anyway. And the complex ecology of decomposition will go through its inevitable changes as the microorganisms respond to variations in temperature, aeration, pH, etc.

This is one area of controversy where I am comfortable seeking the advice of an expert. In this case, the authority is Clarence Golueke, who personally researched and developed U.C. fast composting in the early 1950s, and who has been developing municipal composting systems ever since. The bibliography of this book lists two useful works by Golueke.

Golueke has run comparison tests of compost starters of all sorts because, in his business, entrepreneurs are constantly attempting to sell inoculants to municipal composting operations. Of these vendors, Golueke says with thinly disguised contempt:

"Most starter entrepreneurs include enzymes when listing the ingredients of their products. The background for this inclusion parallels the introduction of purportedly advanced versions of starters-i.e., "advanced" in terms of increased capacity, utility and versatility. Thus in the early 1950's (when [I made my] appearance on the compost scene), starters were primarily microbial and references to identities of constituent microbes were very vague. References to enzymes were extremely few and far between. As early ("pioneer") researchers began to issue formal and informal reports on microbial groups (e.g., actinomycetes) observed by them, they also began to conjecture on the roles of those microbial groups in the compost process. The conjectures frequently were accompanied by surmises about the part played by enzymes.

Coincidentally, vendors of starters in vogue at the time began to claim that their products included the newly reported microbial groups as well as an array of enzymes. For some reason, hormones were attracting attention at the time, and so most starters were supposedly laced with hormones. In time, hormones began to disappear from the picture, whereas enzymes were given a billing parallel to that accorded to the microbial component."

Golueke has worked out methods of testing starters that eliminates any random effects and conclusively demonstrates their result. Inevitably, and repeatedly, he found that there was no difference between using a starter and not using one. And he says, "Although anecdotal accounts of success due to the use of particular inoculum are not unusual in the popular media, we have yet to come across unqualified accounts of successes in the refereed scientific and technical literature." I use a variation of mass inoculation when making compost. While building a new heap, I periodically scrape up and toss in a few shovels of compost and soil from where the previous pile was made. Frankly, if I did not do this I don't think the result would be any worse.



Bibliography



On composting and soil organic matter

Workshop on the Role of Earthworms in the Stabilization of Organic Residues, Vol. I and II. Edited by Mary Appelhof. Kalamazoo, Michigan: Beech Leaf Press of the Kalamazoo Nature Center, 1981. If ever there was a serious investigation into the full range of the earthworm's potential to help Homo Sapiens, this conference explored it. Volume II is the most complete bibliography ever assembled on the earthworm.

Appelhof, Mary. Worms Eat My Garbage. Kalamazoo, Michigan: Flower Press, 1982. A delightful, slim, easy reading, totally positive book that offers enthusiastic encouragement to take advantage of vermicomposting.

Barrett, Dr. Thomas J. Harnessing the Earthworm. Boston: Wedgewood Press, 1959.

The Biocycle Guide to the Art & Science of Composting. Edited by the Staff of Biocycle: Journal of Waste Recycling. Emmaus, Pennsylvania: J.G. Press, 1991. The focus of this book is on municipal composting and other industrial systems. Though imprinted "Emmaus" this is not the Rodale organization, but a group that separated from Rodale Press over ten years ago. included on the staff are some old Organic Gardening and Farming staffers from the 1970s, including Gene Logdson and Jerome Goldstein. A major section discussing the biology and ecology of composting is written by Clarence Golueke. There are articles about vermicomposting, anaerobic digestion and biogasification, and numerous descriptions of existing facilities.

Campbell, Stu. Let It Rot! Pownal, Vermont: Storey Communications, Inc., 1975. Next to my book, the best in-print at-home compost making guide.

Darwin, Charles R. The Formation of Vegetable Mould through the Action of Worms with Observations on their Habits. London: John Murray & Co., 1881.

Dindal, Daniel L. Ecology of Compost. Syracuse, New York: N.Y. State Council of Environmental Advisors and SUNY College of Environmental Science and Forestry, 1972. Actually, a little booklet but very useful.

Golueke, Clarence G., Ph.D. Composting: A Study of the Process and its Principles. Emmaus: Rodale Press, 1972. Golueke, writing in "scientific" says much of what my book does in one-third as many words that are three times as long. He is America's undisputed authority on composting.

Hopkins, Donald P. Chemicals, Humus and the Soil. Brooklyn: Chemical Publishing Company, 1948. Any serious organic gardener should confront Donald Hopkins' thoughtful critique of Albert Howard's belief system. This book demolishes the notion that chemical fertilizers are intrinsically harmful to soil life while correctly stressing the vital importance of humus.

Hopp, Henry. What Every Gardener Should Know About Earthworms. Charlotte, Vermont: Garden Way Publishing Company, 1973. Hopp was a world-recognized expert on the earthworm.

Howard, Albert and Yeshwant D. Wad. The Waste Products of Agriculture: Their Utilization as Humus. London: Oxford University Press, 1931. Many organic gardeners have read Howard's An Agricultural Testament, but almost none have heard of this book. It is the source of my information about the original Indore composting system.

An Agricultural Testament. London & New York: Oxford University Press, 1940. Describes Howard's early crusade to restore humus to industrial farming.

The Soil and Health. New York: Devin Adair, 1947. Also published in London by Faber & Faber, titled Farming and Gardening for Health or Disease. A full development of Howard's theme that humus is health for plants, animals and people.

Howard, Louise E. The Earth's Green Carpet. Emmaus: Rodale Press, 1947. An oft-overlooked book by Howard's second wife. This one, slim volume expresses with elegant and passionate simplicity all of the basic beliefs of the organic gardening and farming movement. See also her Albert Howard in India.

Kevan, D. Keith. Soil Animals. London: H. F. & G. Witherby Ltd., 1962. Soil zoology for otherwise well-schooled layreaders.

King, F.H. Farmers of Forty Centuries or Permanent Agriculture in China, Korea and Japan. Emmaus: Rodale Press, first published 1911. Treasured by the organic gardening movement for its description of a long-standing and successful agricultural system based completely on composting. It is a great travel/adventure book.

Koepf, H.H., B.D. Petterson, and W. Shaumann. Bio-Dynamic Agriculture: An Introduction. Spring Valley, New York: Anthroposophic Press, 1976. A good introduction to this philosophical/mystical system of farming and gardening that uses magical compost inoculants.

Krasilnikov, N A. Soil Microorganisms and Higher Plants. Translated by Y.A. Halperin. Jerusalem: Israel Program for Scientific Translations, 1961. Organic gardeners have many vague beliefs about how humus makes plants healthy. This book scientifically explains why organic matter in soil makes plants healthy. Unlike most translations of Russian, this one is an easy read.

Kuhnelt, Wilhelm. Soil Biology: with special reference to the animal kingdom. East Lansing: Michigan State University Press, 1976. Soil zoology at a level assuming readers have university-level biology, zoology and microbiology. Still, very interesting to well-read lay persons who are not intimidated by Latin taxonomy.

Minnich, Jerry. The Earthworm Book: How to Raise and Use Earthworms for Your Farm and Garden. Emmaus: Rodale Press, 1977. This book is a thorough and encyclopedic survey of the subject

Minnich, Jerry and Marjorie Hunt. The Rodale Guide to Composting. Emmaus, Pennsylvania: Rodale Press, 1979. A very complete survey of composting at home, on the farm, and in municipalities. The book has been through numerous rewritings since the first edition; this version is the best. It is more cohesive and less seeming like it was written by a committee than the version in print now. Organic Gardening and Farming magazine may have been at its best when Minnich was a senior editor.

Oliver, George Sheffield. Our Friend the Earthworm. Library no. 26. Emmaus: Rodale Press, 1945. During the 1940s Rodale Press issued an inexpensive pamphlet library; this is one of the series.

Pfeiffer, E.E. Biodynamic Farming and Gardening. Spring Valley, New York: Anthroposophic Press, 1938.

Poincelot, R.P. The Biochemistry and Methodology of Composting. Vol. Bull. 727. Conn. Agric. Expt. Sta., 1972. A rigorous but readable review of scientific literature and known data on composting through 1972 including a complete bibliography.

Russell, Sir E. John. Soil Conditions and Plant Growth. Eighth Ed., New York: Longmans, Green & Co., 1950. The best soil science text I know of. Avoid the recent in-print edition that has been revised by a committee of current British agronomists. They enlarged Russell's book and made more credible to academics by making it less comprehensible to ordinary people with good education and intelligence through the introduction of unnecessary mathematical models and stilted prose. it lacks the human touch and simpler explanations of Russell's original statements.

Schaller, Friedrich. Soil Animals. Ann Arbor: University of Michigan, 1968. Soil zoology for American readers without extensive scientific background. Shaler was Kuhnelt's student.

Stout, Ruth. Gardening Without Work: For the Aging, the Busy and the Indolent. Old Greenwich, Connecticut: Devin Adair, 1961. The original statement of mulch gardening. Fun to read. Her disciple, Richard Clemence, wrote several books in the late 1970s that develop the method further.

Of interest to the serious food gardener

I have learned far more from my own self-directed studies than my formal education. From time to time I get enthusiastic about some topic and voraciously read about it. When I started gardening in the early 1970s l quickly devoured everything labeled "organic" in the local public library and began what became a ten-year subscription to Organic Gardening and Farming magazine. During the early 1980s the garden books that I wrote all had the word "organic" in the title.

In the late 1980s my interest turned to what academics might call 'the intellectual history of radical agriculture.' I reread the founders of the organic gardening and farming movement, only to discover that they, like Mark Twain's father, had become far more intelligent since l last read them fifteen years back. l began to understand that one reason so many organic gardeners misunderstood Albert Howard was that he wrote in English, not American. l also noticed that there were other related traditions of agricultural reform and followed these back to their sources. This research took over eighteen months of heavy study. l really gave the interlibrary loan librarian a workout.

Herewith are a few of the best titles l absorbed during that research. l never miss an opportunity to help my readers discover that older books were written in an era before all intellectuals were afflicted with lifelong insecurity caused by cringing from an imaginary critical and nattery college professor standing over their shoulder. Older books are often far better than new ones, especially if you'll forgive them an occasional error in point of fact. We are not always discovering newer, better, and improved. Often we are forgetting and obscuring and confusing what was once known, clear and simple. Many of these extraordinary old books are not in print and not available at your local library. However, a simple inquiry at the Interlibrary Loan desk of most libraries will show you how easy it is to obtain these and most any other book you become interested in.

Albrecht, William A. The Albrecht Papers, Vols 1 &2. Kansas City: Acres, USA 1975.

Albert Howard, Weston Price, Sir Robert McCarrison, and William Albrecht share equal responsibility for creating this era's movement toward biologically sound agriculture. Howard is still well known to organic gardeners, thanks to promotion by the Rodale organization while Price, McCarrison, and Albrecht have faded into obscurity. Albrecht was chairman of the Soil Department at the University of Missouri during the 1930s. His unwavering investigation of soil fertility as the primary cause of health and disease was considered politically incorrect by the academic establishment and vested interests that funded agricultural research at that time. Driven from academia, he wrote prolifically for nonscientific magazines and lectured to farmers and medical practitioners during the 1940s and 1950s. Albrecht was willing to consider chemical fertilizers as potentially useful though he did not think chemicals were as sensible as more natural methods. This view was unacceptable to J.l. Rodale, who ignored Albrecht's profound contributions.

Balfour, Lady Eve B. The Living Soil. London: Faber and Faber, 1943.

Lady Balfour was one of the key figures in creating the organic gardening and farming movement. She exhibited a most remarkable intelligence and understanding of the science of health and of the limitations of her own knowledge. Balfour is someone any serious gardener will want to meet through her books. Lady Balfour proved Woody Allen right about eating organic brown rice; she died only recently in her late 90s, compus mentis to the end.

Borsodi, Ralph. Flight from the City: An Experiment in Creative Living on the Land. New York: Harper and Brothers, 1933.

A warmly human back-to-the-lander whose pithy critique of industrial civilization still hits home. Borsodi explains how production of life's essentials at home with small-scale technology leads to enhanced personal liberty and security. Homemade is inevitably more efficient, less costly, and better quality than anything mass-produced. Readers who become fond of this unique individualist's sociology and political economy will also enjoy Borsodi's This Ugly Civilization and The Distribution Age.

Brady, Nyle C. The Nature and Properties of Soils, Eighth Edition. New York: Macmillan, 1974.

Through numerous editions and still the standard soils text for American agricultural colleges. Every serious gardener should attempt a reading of this encyclopedia of soil knowledge every few years. See also Foth, Henry D. Fundamentals of Soil Science.

Bromfield, Louis. Malibar Farm. New York: Harper & Brothers, 1947.

Here is another agricultural reformer who did not exactly toe the Organic Party line as promulgated by J.l. Rodale. Consequently his books are relatively unknown to today's gardening public. If you like Wendell Berry you'll find Bromfield's emotive and Iyrical prose even finer and less academically contrived. His experiments with ecological farming are inspiring. See also Bromfield's other farming books: Pleasant Valley, In My Experience, and Out of the Earth.

Carter, Vernon Gill and Dale, Tom. Topsoil and Civilization. Norman: University of Oklahoma Press, 1974. (first edition, 1954)

This book surveys seven thousand years of world history to show how each place where civilization developed was turned into an impoverished, scantily-inhabited semi-desert by neglecting soil conservation. Will ours' survive any better? Readers who wish to pursue this area further might start with Wes Jackson's New Roots for Agriculture.

Ernle, (Prothero) Lord. English Farming Past and Present, 6th edition. First published London: Longmans, Green & Co., Ltd., 1912, and many subsequent editions. Chicago: Quadrangle Books, 1962.

Some history is dry as dust. Ernle's writing lives like that of Francis Parkman or Gibbon. Anyone serious about vegetable gardening will want to know all they can about the development of modern agricultural methods.

Foth, Henry D. Fundamentals of Soil Science, Eighth Edition. New York: John Wylie & Sons, 1990.

Like Brady's text, this one has also been through numerous editions for the past several decades. Unlike Brady's work however, this book is a little less technical, an easier read as though designed for non-science majors. Probably the best starter text for someone who wants to really understand soil.

Hall, Bolton. Three Acres and Liberty. New York: Macmillan, 1918.

Bolton Hall marks the start of our modern back-to-the-land movement. He was Ralph Borsodi's mentor and inspiration. Where Ralph was smooth and intellectual, Hall was crusty and Twainesque.

Hamaker, John. D. The Survival of Civilization. Annotated by Donald A. Weaver. Michigan/ California: Hamaker-Weaver Publishers, 1982.

Forget global warming, Hamaker believably predicts the next ice age is coming. Glaciers will be upon us sooner than we know unless we reverse intensification of atmospheric carbon dioxide by remineralization of the soil. Very useful for its exploration of the agricultural use of rock flours. Helps one stand back from the current global warming panic and ask if we really know what is coming. Or are we merely feeling guilty for abusing Earth?

Hopkins, Cyril G. Soil Fertility and Permanent Agriculture. Boston: Ginn and Company, 1910.

Though of venerable lineage, this book is still one of the finest of soil manuals in existence. Hopkins' interesting objections to chemical fertilizers are more economic than moral.

The Story of the Soil: From the Basis of Absolute Science and Real Life. Boston: Richard G. Badger, 1911.

A romance of soil science similar to Ecotopia or Looking Backward. No better introduction exists to understanding farming as a process of management of overall soil mineralization. People who attempt this book should be ready to forgive that Hopkins occasionally expresses opinions on race and other social issues that were acceptable in his era but today are considered objectionable by most Americans.

Jenny, Hans. Factors of Soil Formation: a System of Quantitative Pedology. New York: McGraw Hill, 1941.

Don't let the title scare you. Jenny's masterpiece is not hard to read and still stands in the present as the best analysis of how soil forms from rock. Anyone who is serious about growing plants will want to know this data.

McCarrison, Sir Robert. The Work of Sir Robert McCarrison. ed. H. M. Sinclair. London Faber and Faber, 1953.

One of the forgotten discoverers of the relationship between soil fertility and human health. McCarrison, a physician and medical researcher, worked in India contemporaneously with Albert Howard. He spent years "trekking around the Hunza and conducted the first bioassays of food nutrition by feeding rat populations on the various national diets of India. And like the various nations of India, some of the rats became healthy, large, long-lived, and good natured while others were small, sickly, irritable, and short-lived.

Nearing, Helen & Scott. Living the Good Life: How to Live Sanely and Simply in a Troubled World. First published in 1950. New York: Schocken Books, 1970.

Continuing in Borsodi's footsteps, the Nearings homesteaded in the thirties and began proselytizing for the self-sufficient life-style shortly thereafter. Scott was a very dignified old political radical when he addressed my high school in Massachusetts in 1961 and inspired me to dream of country living. He remained active until nearly his hundredth birthday. See also: Continuing the Good Life and The Maple Sugar Book.

Parnes, Robert. Organic and Inorganic Fertilizers. Mt. Vernon, Maine: Woods End Agricultural Institute, 1986.

Price, Weston A. Nutrition and Physical Degeneration. La Mesa, California: Price-Pottenger Nutrition Foundation, reprinted 1970. (1939)

Sits on the "family bible" shelf in my home along with Albrecht, McCarrison, and Howard. Price, a dentist with strong interests in prevention, wondered why his clientele, 1920s midwest bourgeoisie, had terrible teeth when prehistoric skulls of aged unlettered savages retained all their teeth in perfect condition. So he traveled to isolated parts of the Earth in the early 1930s seeking healthy humans. And he found them—belonging to every race and on every continent. And found out why they lived long, had virtually no degeneration of any kind including dental degeneration. Full of interesting photographs, anthropological data, and travel details. A trail-blazing work that shows the way to greatly improved human health.

Rodale, J.I. The Organic Front. Emmaus: Rodale Press, 1948.

An intensely ideological statement of the basic tenets of the Organic faith. Rodale established the organic gardening and farming movement in the United States by starting up Organic Gardening and Farming magazine in 1942. His views, limitations and preferences have defined "organic" ever since. See also: Pay Dirt.

Schuphan, Werner. Nutritional Values in Crops and Plants. London: Faber and Faber, 1965.

A top-rate scientist asks the question: "Is organically grown food really more nutritious?" The answer is: "yes, and no."

Smith, J. Russell. Tree Crops: A Permanent Agriculture. New York: Harcourt, Brace and Company, 1929.

No bibliography of agricultural alternatives should overlook this classic critique of farming with the plow. Delightfully original!

Solomon, Steve. Growing Vegetables West of the Cascades. Seattle, Washington: Sasquatch Books, 1989.

My strictly regional focus combined with the reality that the climate west of the Cascades is radically different than the rest of the United States has made this vegetable gardening text virtually unknown to American gardeners east of the Cascades. It has been praised as the best regional garden book ever written. Its analysis of soil management, and critique of Rodale's version of the organic gardening and farming philosophy are also unique. I founded and ran Territorial Seed Company, a major, mail-order vegetable garden seed business; no other garden book has ever encompassed my experience with seeds and the seed world.

Waterwise Gardening. Seattle, Sasquatch Books, 1992.

How to grow vegetables without dependence on irrigation. Make your vegetables able to survive long periods of drought and still be very productive. My approach is extensive, old fashioned and contrarian, the opposite of today's intensive, modern, trendy postage-stamp living.

Turner, Frank Newman. Fertility, Pastures and Cover Crops Based on Nature's Own Balanced Organic Pasture Feeds. reprinted from: Faber and Faber, 1955. ed., San Diego: Rateaver, 1975.

An encouragement to farm using long rotations and green manuring systems from a follower of Albert Howard. Turner offered a remarkably sensible definition for soil fertility, in essence, "if my livestock stay healthy, live long, breed well, and continue doing so for at least four generations, then my soil was fertile."

Voisin, Andre. Better Grassland Sward. London: Crosby Lockwood and Sons, Ltd., 1960.

The first half is an amazing survey of the role of the earthworm in soil fertility. The rest is just Voisin continuing on at his amazing best. No one interested in soil and health should remain unfamiliar with Voisin's intelligence. See also: Grass Tetany, Grass Productivity, and Soil, Grass and Cancer.

THE END

Previous Part     1  2  3  4  5
Home - Random Browse