p-books.com
More Letters of Charles Darwin Volume II - Volume II (of II)
by Charles Darwin
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14     Next Part
Home - Random Browse

(Figures 2, 3 and 4.)

If dike gave immediate origin to volcanic vent we should have craters of [an] elliptic shape [Figure 3]. I believe that when the molten rock in a dike comes near to the surface, some one two or three points will always certainly chance to afford an easier passage upward to the actual surface than along the whole line, and therefore that the dike will be connected (if the whole were bared and dissected) with the vent by a column or cone (see my elegant drawing) of lava [Figure 4]. I do not doubt that the dikes are thus indirectly connected with eruptive vents. E. de B. seems to have observed many of his T; now without he supposes the whole line of fissure or dike to have poured out lava (which implies, as above remarked, craters of an elliptic or almost linear shape) on both sides, how extraordinarily improbable it is, that there should have been in a single line of section so many intersections of points eruption; he must, I think, make his orifices of eruption almost linear or, if not so, astonishingly numerous. One must refer to what one has seen oneself: do pray, when you go home, look at the section of a minute cone of eruption at the Galapagos, page 109 (486/1. "Geological Observations on Volcanic Islands." London, 1890, page 238.), which is the most perfect natural dissection of a crater which I have ever heard of, and the drawing of which you may, I assure you, trust; here the arching over of the streams as they were poured out over the lip of the crater was evident, and are now thus seen united to the central irregular column. Again, at St. Jago I saw some horizontal sections of the bases of small craters, and the sources or feeders were circular. I really cannot entertain a doubt that E. de B. is grossly wrong, and that you are right in your view; but without most distinct evidence I will never admit that a dike joins on rectangularly to a stream of lava. Your argument about the perpendicularity of the dike strikes me as good.

The map of Etna, which I have been just looking at, looks like a sudden falling in, does it not? I am not much surprised at the linear vent in Santorin (this linear tendency ought to be difficult to a circular-crater-of-elevation-believer), I think Abich (486/2. "Geologische Beobachtungen uber die vulkanischen Erscheinungen und Bildungen in Unter- und Mittel-Italien." Braunschweig, 1841.) describes having seen the same actual thing forming within the crater of Vesuvius. In such cases what outline do you give to the upper surface of the lava in the dike connecting them? Surely it would be very irregular and would send up irregular cones or columns as in my above splendid drawing.

At the Royal on Friday, after more doubt and misgiving than I almost ever felt, I voted to recommend Forbes for Royal Medal, and that view was carried, Sedgwick taking the lead.

I am glad to hear that all your party are pretty well. I know from experience what you must have gone through. From old age with suffering death must be to all a happy release. (486/3. This seems to refer to the death of Sir Charles Lyell's father, which occurred on November 8th, 1849.)

I saw Dan Sharpe the other day, and he told me he had been working at the mica schist (i.e. not gneiss) in Scotland, and that he was quite convinced my view was right. You are wrong and a heretic on this point, I know well.

LETTER 487. TO C.H.L. WOODD. Down, March 4th [1850].

(487/1. The paper was sent in MS., and seems not to have been published. Mr. Woodd was connected by marriage with Mr. Darwin's cousin, the late Rev. W. Darwin Fox. It was perhaps in consequence of this that Mr. Darwin proposed Mr. Woodd for the Geological Society.)

I have read over your paper with attention; but first let me thank you for your very kind expressions towards myself. I really feel hardly competent to discuss the questions raised by your paper; I feel the want of mathematical mechanics. All such problems strike me as awfully complicated; we do not even know what effect great pressure has on retarding liquefaction by heat, nor, I apprehend, on expansion. The chief objection which strikes me is a doubt whether a mass of strata, when heated, and therefore in some slight degree at least softened, would bow outwards like a bar of metal. Consider of how many subordinate layers each great mass would be composed, and the mineralogical changes in any length of any one stratum: I should have thought that the strata would in every case have crumpled up, and we know how commonly in metamorphic strata, which have undergone heat, the subordinate layers are wavy and sinuous, which has always been attributed to their expansion whilst heated.

Before rocks are dried and quarried, manifold facts show how extremely flexible they are even when not at all heated. Without the bowing out and subsequent filling in of the roof of the cavity, if I understand you, there would be no subsidence. Of course the crumpling up of the strata would thicken them, and I see with you that this might compress the underlying fluidified rock, which in its turn might escape by a volcano or raise a weaker part of the earth's crust; but I am too ignorant to have any opinion whether force would be easily propagated through a viscid mass like molten rock; or whether such viscid mass would not act in some degree like sand and refuse to transmit pressure, as in the old experiment of trying to burst a piece of paper tied over the end of a tube with a stick, an inch or two of sand being only interposed. I have always myself felt the greatest difficulty in believing in waves of heat coming first to this and then to that quarter of the world: I suspect that heat plays quite a subordinate part in the upward and downward movements of the earth's crust; though of course it must swell the strata where first affected. I can understand Sir J. Herschel's manner of bringing heat to unheated strata—namely, by covering them up by a mile or so of new strata, and then the heat would travel into the lower ones. But who can tell what effect this mile or two of new sedimentary strata would have from mere gravity on the level of the supporting surface? Of course such considerations do not render less true that the expansion of the strata by heat would have some effect on the level of the surface; but they show us how awfully complicated the phenomenon is. All young geologists have a great turn for speculation; I have burned my fingers pretty sharply in that way, and am now perhaps become over-cautious; and feel inclined to cavil at speculation when the direct and immediate effect of a cause in question cannot be shown. How neatly you draw your diagrams; I wish you would turn your attention to real sections of the earth's crust, and then speculate to your heart's content on them; I can have no doubt that speculative men, with a curb on, make far the best observers. I sincerely wish I could have made any remarks of more interest to you, and more directly bearing on your paper; but the subject strikes me as too difficult and complicated. With every good wish that you may go on with your geological studies, speculations, and especially observations...

LETTER 488. TO C. LYELL. Down, March 24th [1853].

I have often puzzled over Dana's case, in itself and in relation to the trains of S. American volcanoes of different heights in action at the same time (page 605, Volume V. "Geological Transactions." (488/1. "On the Connection of certain Volcanic Phenomena in South America, and on the Formation of Mountain Chains and Volcanoes, as the Effect of the same Power by which Continents are Elevated" ("Trans. Geol. Soc." Volume V., page 601, 1840). On page 605 Darwin records instances of the simultaneous activity after an earthquake of several volcanoes in the Cordillera.)) I can throw no light on the subject. I presume you remember that Hopkins (488/2. See "Report on the Geological Theories of Elevation and Earthquakes," by W. Hopkins, "Brit. Assoc. Rep." 1847, page 34.) in some one (I forget which) of his papers discusses such cases, and urgently wishes the height of the fluid lava was known in adjoining volcanoes when in contemporaneous action; he argues vehemently against (as far as I remember) volcanoes in action of different heights being connected with one common source of liquefied rock. If lava was as fluid as water, the case would indeed be hopeless; and I fancy we should be led to look at the deep-seated rock as solid though intensely hot, and becoming fluid as soon as a crack lessened the tension of the super-incumbent strata. But don't you think that viscid lava might be very slow in communicating its pressure equally in all directions? I remember thinking strongly that Dana's case within the one crater of Kilauea proved too much; it really seems monstrous to suppose that the lava within the same crater is not connected at no very great depth.

When one reflects on (and still better sees) the enormous masses of lava apparently shot miles high up, like cannon-balls, the force seems out of all proportion to the mere gravity of the liquefied lava; I should think that a channel a little straightly or more open would determine the line of explosion, like the mouth of a cannon compared to the touch-hole. If a high-pressure boiler was cracked across, no one would think for a moment that the quantity of water and steam expelled at different points depended on the less or greater height of the water within the boiler above these points, but on the size of the crack at these points; and steam and water might be driven out both at top and bottom. May not a volcano be likened to a protruding and cracked portion on a vast natural high-pressure boiler, formed by the surrounding area of country? In fact, I think my simile would be truer if the difference consisted only in the cracked case of the boiler being much thicker in some parts than in others, and therefore having to expel a greater thickness or depth of water in the thicker cracks or parts—a difference of course absolutely as nothing.

I have seen an old boiler in action, with steam and drops of water spurting out of some of the rivet-holes. No one would think whether the rivet-holes passed through a greater or less thickness of iron, or were connected with the water higher or lower within the boiler, so small would the gravity be compared with the force of the steam. If the boiler had been not heated, then of course there would be a great difference whether the rivet-holes entered the water high or low, so that there was greater or less pressure of gravity. How to close my volcanic rivet-holes I don't know.

I do not know whether you will understand what I am driving at, and it will not signify much whether you do or not. I remember in old days (I may mention the subject as we are on it) often wishing I could get you to look at continental elevations as THE phenomenon, and volcanic outbursts and tilting up of mountain chains as connected, but quite secondary, phenomena. I became deeply impressed with the truth of this view in S. America, and I do not think you hold it, or if so make it clear: the same explanation, whatever it may be, which will account for the whole coast of Chili rising, will and must apply to the volcanic action of the Cordillera, though modified no doubt by the liquefied rock coming to the surface and reaching water, and so [being] rendered explosive. To me it appears that this ought to be borne in mind in your present subject of discussion. I have written at too great length; and have amused myself if I have done you no good—so farewell.

LETTER 489. TO C. LYELL. Down, July 5th [1856].

I am very much obliged for your long letter, which has interested me much; but before coming to the volcanic cosmogony I must say that I cannot gather your verdict as judge and jury (and not as advocate) on the continental extensions of late authors (489/1. See "Life and Letters," II., page 74; Letter to Lyell, June 25th, 1856: also letters in the sections of the present work devoted to Evolution and Geographical Distribution.), which I must grapple with, and which as yet strikes me as quite unphilosophical, inasmuch as such extensions must be applied to every oceanic island, if to any one, as to Madeira; and this I cannot admit, seeing that the skeletons, at least, of our continents are ancient, and seeing the geological nature of the oceanic islands themselves. Do aid me with your judgment: if I could honestly admit these great [extensions], they would do me good service.

With respect to active volcanic areas being rising areas, which looks so pretty on the coral maps, I have formerly felt "uncomfortable" on exactly the same grounds with you, viz. maritime position of volcanoes; and still more from the immense thicknesses of Silurian, etc., volcanic strata, which thicknesses at first impress the mind with the idea of subsidence. If this could be proved, the theory would be smashed; but in deep oceans, though the bottom were rising, great thicknesses of submarine lava might accumulate. But I found, after writing Coral Book, cases in my notes of submarine vesicular lava-streams in the upper masses of the Cordillera, formed, as I believe, during subsidence, which staggered me greatly. With respect to the maritime position of volcanoes, I have long been coming to the conclusion that there must be some law causing areas of elevation (consequently of land) and of subsidence to be parallel (as if balancing each other) and closely approximate; I think this from the form of continents with a deep ocean on one side, from coral map, and especially from conversations with you on immense subsidences of the Carboniferous and [other] periods, and yet with continued great supply of sediment. If this be so, such areas, with opposite movements, would probably be separated by sets of parallel cracks, and would be the seat of volcanoes and tilts, and consequently volcanoes and mountains would be apt to be maritime; but why volcanoes should cling to the rising edge of the cracks I cannot conjecture. That areas with extinct volcanic archipelagoes may subside to any extent I do not doubt.

Your view of the bottom of Atlantic long sinking with continued volcanic outbursts and local elevations at Madeira, Canaries, etc., grates (but of course I do not know how complex the phenomena are which are thus explained) against my judgment; my general ideas strongly lead me to believe in elevatory movements being widely extended. One ought, I think, never to forget that when a volcano is in action we have distinct proof of an action from within outwards. Nor should we forget, as I believe follows from Hopkins (489/2. "Researches in Physical Geology," W. Hopkins, "Trans. Phil. Soc. Cambridge," Volume VI., 1838. See also "Report on the Geological Theories of Elevation and Earthquakes," W. Hopkins, "Brit. Assoc. Rep." page 33, 1847 (Oxford meeting).), and as I have insisted in my Earthquake paper, that volcanoes and mountain chains are mere accidents resulting from the elevation of an area, and as mountain chains are generally long, so should I view areas of elevation as generally large. (489/3. "On the Connexion of certain Volcanic Phenomena in S. America, and on the Formation of Mountain Chains and Volcanoes, as the Effect of the same Power by which Continents are Elevated," "Trans. Geol. Soc." Volume V., page 601, 1840. "Bearing in mind Mr. Hopkins' demonstration, if there be considerable elevation there must be fissures, and, if fissures, almost certainly unequal upheaval, or subsequent sinking down, the argument may be finally thus put: mountain chains are the effects of continental elevations; continental elevations and the eruptive force of volcanoes are due to one great motive, now in progressive action..." (loc. cit., page 629).)

Your old original view that great oceans must be sinking areas, from there being causes making land and yet there being little land, has always struck me till lately as very good. But in some degree this starts from the assumption that within periods of which we know anything there was either a continent in such areas, or at least a sea-bottom of not extreme depth.

LETTER 490. TO C. LYELL. King's Head Hotel, Sandown, Isle of Wight, July 18th [1858].

I write merely to thank you for the abstract of the Etna paper. (490/1. "On the Structure of Lavas which have Consolidated on Steep Slopes, with Remarks on the Mode of Origin of Mount Etna and on the Theory of 'Craters of Elevation,'" by C. Lyell, "Phil. Trans. R. Soc." Volume CXLVIII., page 703, 1859.) It seems to me a very grand contribution to our volcanic knowledge. Certainly I never expected to see E. de B.'s [Elie de Beaumont] theory of slopes so completely upset. He must have picked out favourable cases for measurement. And such an array of facts he gives! You have scotched, and will see die, I now think, the Crater of Elevation theory. But what vitality there is in a plausible theory! (490/2. The rest of this letter is published in "Life and Letters," II., page 129.)

LETTER 491. TO C. LYELL. Down, November 25th [1860].

I have endeavoured to think over your discussion, but not with much success. You will have to lay down, I think, very clearly, what foundation you argue from—four parts (which seems to me exceedingly moderate on your part) of Europe being now at rest, with one part undergoing movement. How it is, that from this you can argue that the one part which is now moving will have rested since the commencement of the Glacial period in the proportion of four to one, I do not pretend to see with any clearness; but does not your argument rest on the assumption that within a given period, say two or three million years, the whole of Europe necessarily has to undergo movement? This may be probable or not so, but it seems to me that you must explain the foundation of your argument from space to time, which at first, to me was very far from obvious. I can, of course, see that if you can make out your argument satisfactorily to yourself and others it would be most valuable. I can imagine some one saying that it is not fair to argue that the great plains of Europe and the mountainous districts of Scotland and Wales have been at all subjected to the same laws of movement. Looking to the whole world, it has been my opinion, from the very size of the continents and oceans, and especially from the enormous ranges of so many mountain-chains (resulting from cracks which follow from vast areas of elevation, as Hopkins argues (491/1. See "Report on the Geological Theories of Elevation and Earthquakes." by William Hopkins. "Brit. Assoc. Rep." 1847, pages 33-92; also the Anniversary Address to the Geological Society by W. Hopkins in 1852 ("Quart. Journ. Geol. Soc." Volume VIII.); in this Address, pages lxviii et seq.) reference is made to the theory of elevation which rests on the supposition "of the simultaneous action of an upheaving force at every point of the area over which the phenomena of elevation preserve a certain character of continuity...The elevated mass...becomes stretched, and is ultimately torn and fissured in those directions in which the tendency thus to tear is greatest...It is thus that the complex phenomena of elevation become referable to a general and simple mechanical cause...")) and from other reasons, it has been my opinion that, as a general rule, very large portions of the world have been simultaneously affected by elevation or subsidence. I can see that this does not apply so strongly to broken Europe, any more than to the Malay Archipelago. Yet, had I been asked, I should have said that probably nearly the whole of Europe was subjected during the Glacial period to periods of elevation and of subsidence. It does not seem to me so certain that the kinds of partial movement which we now see going on show us the kind of movement which Europe has been subjected to since the commencement of the Glacial period. These notions are at least possible, and would they not vitiate your argument? Do you not rest on the belief that, as Scandinavia and some few other parts are now rising, and a few others sinking, and the remainder at rest, so it has been since the commencement of the Glacial period? With my notions I should require this to be made pretty probable before I could put much confidence in your calculations. You have probably thought this all over, but I give you the reflections which come across me, supposing for the moment that you took the proportions of space at rest and in movement as plainly applicable to time. I have no doubt that you have sufficient evidence that, at the commencement of the Glacial period, the land in Scotland, Wales, etc., stood as high or higher than at present, but I forget the proofs.

Having burnt my own fingers so consumedly with the Wealden, I am fearful for you, but I well know how infinitely more cautious, prudent, and far-seeing you are than I am; but for heaven's sake take care of your fingers; to burn them severely, as I have done, is very unpleasant.

Your 2 1/2 feet for a century of elevation seems a very handsome allowance. can D. Forbes really show the great elevation of Chili? I am astounded at it, and I took some pains on the point.

I do not pretend to say that you may not be right to judge of the past movements of Europe by those now and recently going on, yet it somehow grates against my judgment,—perhaps only against my prejudices.

As a change from elevation to subsidence implies some great subterranean or cosmical change, one may surely calculate on long intervals of rest between. Though, if the cause of the change be ever proved to be astronomical, even this might be doubtful.

P.S.—I do not know whether I have made clear what I think probable, or at least possible: viz., that the greater part of Europe has at times been elevated in some degree equably; at other times it has all subsided equably; and at other times might all have been stationary; and at other times it has been subjected to various unequal movements, up and down, as at present.

LETTER 492. TO C. LYELL. Down, December 4th [1860].

It certainly seems to me safer to rely solely on the slowness of ascertained up-and-down movement. But you could argue length of probable time before the movement became reversed, as in your letter. And might you not add that over the whole world it would probably be admitted that a larger area is NOW at rest than in movement? and this I think would be a tolerably good reason for supposing long intervals of rest. You might even adduce Europe, only guarding yourself by saying that possibly (I will not say probably, though my prejudices would lead me to say so) Europe may at times have gone up and down all together. I forget whether in a former letter you made a strong point of upward movement being always interrupted by long periods of rest. After writing to you, out of curiosity I glanced at the early chapters in my "Geology of South America," and the areas of elevation on the E. and W. coasts are so vast, and proofs of many successive periods of rest so striking, that the evidence becomes to my mind striking. With regard to the astronomical causes of change: in ancient days in the "Beagle" when I reflected on the repeated great oscillations of level on the very same area, and when I looked at the symmetry of mountain chains over such vast spaces, I used to conclude that the day would come when the slow change of form in the semi-fluid matter beneath the crust would be found to be the cause of volcanic action, and of all changes of level. And the late discussion in the "Athenaeum" (492/1. "On the Change of Climate in Different Regions of the Earth." Letters from Sir Henry James, Col. R.E., "Athenaeum," August 25th, 1860, page 256; September 15th, page 355; September 29th, page 415; October 13th, page 483. Also letter from J. Beete Jukes, Local Director of the Geological Survey of Ireland, loc. cit., September 8th, page 322; October 6th, page 451.), by Sir H. James (though his letter seemed to me mighty poor, and what Jukes wrote good), reminded me of this notion. In case astronomical agencies should ever be proved or rendered probable, I imagine, as in nutation or precession, that an upward movement or protrusion of fluidified matter below might be immediately followed by movement of an opposite nature. This is all that I meant.

I have not read Jamieson, or yet got the number. (492/2. Possibly William Jameson, "Journey from Quito to Cayambe," "Geog. Soc. Journ." Volume XXXI., page 184, 1861.) I was very much struck with Forbes' explanation of n[itrate] of soda beds and the saliferous crust, which I saw and examined at Iquique. (492/3. "On the Geology of Bolivia and Southern Peru," by D. Forbes, "Quart. Journ. Geol. Soc." Volume XVII., page 7, 1861. Mr. Forbes attributes the formation of the saline deposits to lagoons of salt water, the communication of which with the sea has been cut off by the rising of the land (loc. cit., page 13).) I often speculated on the greater rise inland of the Cordilleras, and could never satisfy myself...

I have not read Stur, and am awfully behindhand in many things...(492/4. The end of this letter is published as a footnote in "Life and Letters," II., page 352.)

(FIGURE 5. Map of part of South America and the Galapagos Archipelago.)

LETTER 493. TO C. LYELL. Down, July 18th [1867].

(493/1. The first part of this letter is published in "Life and Letters," III., page 71.)

(493/2. Tahiti (Society Islands) is coloured blue in the map showing the distribution of the different kinds of reefs in "The Structure and Distribution of Coral Reefs," Edition III., 1889, page 185. The blue colour indicates the existence of barrier reefs and atolls which, on Darwin's theory, point to subsidence.)

Tahiti is, I believe, rightly coloured, for the reefs are so far from the land, and the ocean so deep, that there must have been subsidence, though not very recently. I looked carefully, and there is no evidence of recent elevation. I quite agree with you versus Herschel on Volcanic Islands. (493/3. Sir John Herschel suggested that the accumulation on the sea-floor of sediment, derived from the waste of the island, presses down the bed of the ocean, the continent being on the other hand relieved of pressure; "this brings about a state of strain in the crust which will crack in its weakest spot, the heavy side going down, and the light side rising." In discussing this view Lyell writes ("Principles," Volume II. Edition X., page 229), "This hypothesis appears to me of very partial application, for active volcanoes, even such as are on the borders of continents, are rarely situated where great deltas have been forming, whether in Pliocene or post-Tertiary times. The number, also, of active volcanoes in oceanic islands is very great, not only in the Pacific, but equally in the Atlantic, where no load of coral matter...can cause a partial weighting and pressing down of a supposed flexible crust.") Would not the Atlantic and Antarctic volcanoes be the best examples for you, as there then can be no coral mud to depress the bottom? In my "Volcanic Islands," page 126, I just suggest that volcanoes may occur so frequently in the oceanic areas as the surface would be most likely to crack when first being elevated. I find one remark, page 128 (493/4. "Volcanic Islands," page 128: "The islands, moreover, of some of the small volcanic groups, which thus border continents, are placed in lines related to those along which the adjoining shores of the continents trend" [see Figure 5].), which seems to me worth consideration—viz. the parallelism of the lines of eruption in volcanic archipelagoes with the coast lines of the nearest continent, for this seems to indicate a mechanical rather than a chemical connection in both cases, i.e. the lines of disturbance and cracking. In my "South American Geology," page 185 (493/5. "Geological Observations on South America," London, 1846, page 185.), I allude to the remarkable absence at present of active volcanoes on the east side of the Cordillera in relation to the absence of the sea on this side. Yet I must own I have long felt a little sceptical on the proximity of water being the exciting cause. The one volcano in the interior of Asia is said, I think, to be near great lakes; but if lakes are so important, why are there not many other volcanoes within other continents? I have always felt rather inclined to look at the position of volcanoes on the borders of continents, as resulting from coast lines being the lines of separation between areas of elevation and subsidence. But it is useless in me troubling you with my old speculations.

LETTER 494. TO A.R. WALLACE. March 22nd [1869].

(494/1. The following extract from a letter to Mr. Wallace refers to his "Malay Archipelago," 1869.)

I have only one criticism of a general nature, and I am not sure that other geologists would agree with me. You repeatedly speak as if the pouring out of lava, etc., from volcanoes actually caused the subsidence of an adjoining area. I quite agree that areas undergoing opposite movements are somehow connected; but volcanic outbursts must, I think, be looked at as mere accidents in the swelling up of a great dome or surface of plutonic rocks, and there seems no more reason to conclude that such swelling or elevation in mass is the cause of the subsidence, than that the subsidence is the cause of the elevation, which latter view is indeed held by some geologists. I have regretted to find so little about the habits of the many animals which you have seen.

LETTER 495. TO C. LYELL. Down, May 20th, 1869.

I have been much pleased to hear that you have been looking at my S. American book (495/1. "Geological Observations on South America," London, 1846.), which I thought was as completely dead and gone as any pre-Cambrian fossil. You are right in supposing that my memory about American geology has grown very hazy. I remember, however, a paper on the Cordillera by D. Forbes (495/2. "Geology of Bolivia and South Peru," by Forbes, "Quart. Journ. Geol. Soc." Volume XVII., pages 7-62, 1861. Forbes admits that there is "the fullest evidence of elevation of the Chile coast since the arrival of the Spaniards. North of Arica, if we accept the evidence of M. d'Orbigny and others, the proof of elevation is much more decided; and consequently it may be possible that here, as is the case about Lima, according to Darwin, the elevation may have taken place irregularly in places..." (loc. cit., page 11).), with splendid sections, which I saw in MS., but whether "referred" to me or lent to me I cannot remember. This would be well worth your looking to, as I think he both supports and criticises my views. In Ormerod's Index to the Journal (495/3. "Classified Index to the Transactions, Proceedings and Quarterly Journal of the Geological Society."), which I do not possess, you would, no doubt, find a reference; but I think the sections would be worth borrowing from Forbes. Domeyko (495/4. Reference is made by Forbes in his paper on Bolivia and Peru to the work of Ignacio Domeyko on the geology of Chili. Several papers by this author were published in the "Annales des Mines" between 1840 and 1869, also in the "Comptes Rendus" of 1861, 1864, etc.) has published in the "Comptes Rendus" papers on Chili, but not, as far as I can remember, on the structure of the mountains. Forbes, however, would know. What you say about the plications being steepest in the central and generally highest part of the range is conclusive to my mind that there has been the chief axis of disturbance. The lateral thrusting has always appeared to me fearfully perplexing. I remember formerly thinking that all lateral flexures probably occurred deep beneath the surface, and have been brought into view by an enormous superincumbent mass having been denuded. If a large and deep box were filled with layers of damp paper or clay, and a blunt wedge was slowly driven up from beneath, would not the layers above it and on both sides become greatly convoluted, whilst those towards the top would be only slightly arched? When I spoke of the Andes being comparatively recent, I suppose that I referred to the absence of the older formations. In looking to my volume, which I have not done for many years, I came upon a passage (page 232) which would be worth your looking at, if you have ever felt perplexed, as I often was, about the sources of volcanic rocks in mountain chains. You have stirred up old memories, and at the risk of being a bore I should like to call your attention to another point which formerly perplexed me much—viz. the presence of basaltic dikes in most great granitic areas. I cannot but think the explanation given at page 123 of my "Volcanic Islands" is the true one. (495/5. On page 123 of the "Geological Observations on the Volcanic Islands visited during the Voyage of H.M.S. 'Beagle,'" 1844, Darwin quotes several instances of greenstone and basaltic dikes intersecting granitic and allied metamorphic rocks. He suggests that these dikes "have been formed by fissures penetrating into partially cooled rocks of the granitic and metamorphic series, and by their more fluid parts, consisting chiefly of hornblende oozing out, and being sucked into such fissures.")

LETTER 496. TO VICTOR CARUS. Down, March 21st, 1876.

The very kind expressions in your letter have gratified me deeply.

I quite forget what I said about my geological works, but the papers referred to in your letter are the right ones. I enclose a list with those which are certainly not worth translating marked with a red line; but whether those which are not thus marked with a red line are worth translation you will have to decide. I think much more highly of my book on "Volcanic Islands" since Mr. Judd, by far the best judge on the subject in England, has, as I hear, learnt much from it.

I think the short paper on the "formation of mould" is worth translating, though, if I have time and strength, I hope to write another and longer paper on the subject.

I can assure you that the idea of any one translating my books better than you never even momentarily crossed my mind. I am glad that you can give a fairly good account of your health, or at least that it is not worse.

LETTER 497. TO T. MELLARD READE. London, December 9th, 1880.

I am sorry to say that I do not return home till the middle of next week, and as I order no pamphlets to be forwarded to me by post, I cannot return the "Geolog. Mag." until my return home, nor could my servants pick it out of the multitude which come by the post. (497/1. Article on "Oceanic Islands," by T. Mellard Reade, "Geol. Mag." Volume VIII., page 75, 1881.)

As I remarked in a letter to a friend, with whom I was discussing Wallace's last book (497/2. Wallace's "Island Life," 1880.), the subject to which you refer seems to me a most perplexing one. The fact which I pointed out many years ago, that all oceanic islands are volcanic (except St. Paul's, and now this is viewed by some as the nucleus of an ancient volcano), seems to me a strong argument that no continent ever occupied the great oceans. (497/3. "During my investigations on coral reefs I had occasion to consult the works of many voyagers, and I was invariably struck with the fact that, with rare exceptions, the innumerable islands scattered through the Pacific, Indian, and Atlantic Oceans were composed either of volcanic or of modern coral rocks" ("Geological Observations on Volcanic Islands, etc." Edition II., 1876, page 140).) Then there comes the statement from the "Challenger" that all sediment is deposited within one or two hundred miles from the shores, though I should have thought this rather doubtful with respect to great rivers like the Amazons.

The chalk formerly seemed to me the best case of an ocean having extended where a continent now stands; but it seems that some good judges deny that the chalk is an oceanic deposit. On the whole, I lean to the side that the continents have since Cambrian times occupied approximately their present positions. But, as I have said, the question seems a difficult one, and the more it is discussed the better.

LETTER 498. TO A. AGASSIZ. Down, January 1st, 1881.

I must write a line or two to thank you much for having written to me so long a letter on coral reefs at a time when you must have been so busy. Is it not difficult to avoid believing that the wonderful elevation in the West Indies must have been accompanied by much subsidence, notwithstanding the state of Florida? (498/1. The Florida reefs cannot be explained by subsidence. Alexander Agassiz, who has described these reefs in detail ("Three Cruises of the U.S. Coast and Geodetic Survey Steamer 'Blake,'" 2 volumes, London, 1888), shows that the southern extremity of the peninsula "is of comparatively recent growth, consisting of concentric barrier-reefs, which have been gradually converted into land by the accumulation of intervening mud-flats" (see also Appendix II., page 287, to Darwin's "Coral Reefs," by T.G. Bonney, Edition III., 1889.)) When reflecting in old days on the configuration of our continents, the position of mountain chains, and especially on the long-continued supply of sediment over the same areas, I used to think (as probably have many other persons) that areas of elevation and subsidence must as a general rule be separated by a single great line of fissure, or rather of several closely adjoining lines of fissure. I mention this because, when looking within more recent times at charts with the depths of the sea marked by different tints, there seems to be some connection between the profound depths of the ocean and the trends of the nearest, though distant, continents; and I have often wished that some one like yourself, to whom the subject was familiar, would speculate on it.

P.S.—I do hope that you will re-urge your views about the reappearance of old characters (498/2. See "Life and Letters," III., pages 245, 246.), for, as far as I can judge, the most important views are often neglected unless they are urged and re-urged.

I am greatly indebted to you for sending me very many most valuable works published at your institution.

2.IX.II. ICE-ACTION, 1841-1882.

LETTER 499. TO C. LYELL. [1841.]

Your extract has set me puzzling very much, and as I find I am better at present for not going out, you must let me unload my mind on paper. I thought everything so beautifully clear about glaciers, but now your case and Agassiz's statement about the cavities in the rock formed by cascades in the glaciers, shows me I don't understand their structure at all. I wish out of pure curiosity I could make it out. (499/1. "Etudes sur les Glaciers," by Louis Agassiz, 1840, contains a description of cascades (page 343), and "des cavites interieures" (page 348).)

If the glacier travelled on (and it certainly does travel on), and the water kept cutting back over the edge of the ice, there would be a great slit in front of the cascade; if the water did not cut back, the whole hollow and cascade, as you say, must travel on; and do you suppose the next season it falls down some crevice higher up? In any case, how in the name of Heaven can it make a hollow in solid rock, which surely must be a work of many years? I must point out another fact which Agassiz does not, as it appears to me, leave very clear. He says all the blocks on the surface of the glaciers are angular, and those in the moraines rounded, yet he says the medial moraines whence the surface rocks come and are a part [of], are only two lateral moraines united. Can he refer to terminal moraines alone when he says fragments in moraines are rounded? What a capital book Agassiz's is. In [reading] all the early part I gave up entirely the Jura blocks, and was heartily ashamed of my appendix (499/2. "M. Agassiz has lately written on the subject of the glaciers and boulders of the Alps. He clearly proves, as it appears to me, that the presence of the boulders on the Jura cannot be explained by any debacle, or by the power of ancient glaciers driving before them moraines...M. Agassiz also denies that they were transported by floating ice." ("Voyages of the 'Adventure' and 'Beagle,'" Volume III., 1839: "Journal and Remarks: Addenda," page 617.)) (and am so still of the manner in which I presumptuously speak of Agassiz), but it seems by his own confession that ordinary glaciers could not have transported the blocks there, and if an hypothesis is to be introduced the sea is much simpler; floating ice seems to me to account for everything as well as, and sometimes better than the solid glaciers. The hollows, however, formed by the ice-cascades appear to me the strongest hostile fact, though certainly, as you said, one sees hollow round cavities on present rock-beaches.

I am glad to observe that Agassiz does not pretend that direction of scratches is hostile to floating ice. By the way, how do you and Buckland account for the "tails" of diluvium in Scotland? (499/3. Mr. Darwin speaks of the tails of diluvium in Scotland extending from the protected side of a hill, of which the opposite side, facing the direction from which the ice came, is marked by grooves and striae (loc. cit., pages 622, 623).) I thought in my appendix this made out the strongest argument for rocks having been scratched by floating ice.

Some facts about boulders in Chiloe will, I think, in a very small degree elucidate some parts of Jura case. What a grand new feature all this ice work is in Geology! How old Hutton would have stared! (499/4. Sir Charles Lyell speaks of the Huttonian theory as being characterised by "the exclusion of all causes not supposed to belong to the present order of Nature" (Lyell's "Principles," Edition XII., volume I., page 76, 1875). Sir Archibald Geikie has recently edited the third volume of Hutton's "Theory of the Earth," printed by the Geological Society, 1899. See also "The Founders of Geology," by Sir Archibald Geikie; London, 1897.)

I ought to be ashamed of myself for scribbling on so. Talking of shame, I have sent a copy of my "Journal" (499/5. "Journal and Remarks," 1832-36. See note 2, page 148.) with very humble note to Agassiz, as an apology for the tone I used, though I say, I daresay he has never seen my appendix, or would care at all about it.

I did not suppose my note about Glen Roy could have been of any use to you—I merely scribbled what came uppermost. I made one great oversight, as you would perceive. I forgot the Glacier theory: if a glacier most gradually disappeared from mouth of Spean Valley [this] would account for buttresses of shingle below lowest shelf. The difficulty I put about the ice-barrier of the middle Glen Roy shelf keeping so long at exactly same level does certainly appear to me insuperable. (499/5. For a description of the shelves or parallel roads in Glen Roy see Darwin's "Observations on the Parallel Roads of Glen Roy, etc." "Phil. Trans. R. Soc." 1839, page 39; also Letter 517 et seq.)

What a wonderful fact this breakdown of old Niagara is. How it disturbs the calculations about lengths of time before the river would have reached the lakes.

I hope Mrs. Lyell will read this to you, then I shall trust for forgiveness for having scribbled so much. I should have sent back Agassiz sooner, but my servant has been very unwell. Emma is going on pretty well.

My paper on South American boulders and "till," which latter deposit is perfectly characterised in Tierra del Fuego, is progressing rapidly. (499/6. "On the Distribution of the Erratic Boulders and on the Contemporaneous Unstratified Deposits of South America," "Trans. Geol. Soc." Volume VI., page 415, 1842.)

I much like the term post-Pliocene, and will use it in my present paper several times.

P.S.—I should have thought that the most obvious objection to the marine-beach theory for Glen Roy would be the limited extension of the shelves. Though certainly this is not a valid one, after an intermediate one, only half a mile in length, and nowhere else appearing, even in the valley of Glen Roy itself, has been shown to exist.

LETTER 500. TO C. LYELL. 1842.

I had some talk with Murchison, who has been on a flying visit into Wales, and he can see no traces of glaciers, but only of the trickling of water and of the roots of the heath. It is enough to make an extraneous man think Geology from beginning to end a work of imagination, and not founded on observation. Lonsdale, I observe, pays Buckland and myself the compliment of thinking Murchison not seeing as worth nothing; but I confess I am astonished, so glaringly clear after two or three days did the evidence appear to me. Have you seen last "New Edin. Phil. Journ.", it is ice and glaciers almost from beginning to end. (500/1. "The Edinburgh New Philosophical Journal," Volume XXXIII. (April-October), 1842, contains papers by Sir G.S. Mackenzie, Prof. H.G. Brown, Jean de Charpentier, Roderick Murchison, Louis Agassiz, all dealing with glaciers or ice; also letters to the Editor relating to Prof. Forbes' account of his recent observations on Glaciers, and a paper by Charles Darwin entitled "Notes on the Effects produced by the Ancient Glaciers of Carnarvonshire, and on the Boulders transported by Floating Ice.") Agassiz says he saw (and has laid down) the two lowest terraces of Glen Roy in the valley of the Spean, opposite mouth of Glen Roy itself, where no one else has seen them. (500/2. "The Glacial Theory and its Recent Progress," by Louis Agassiz, loc. cit., page 216. Agassiz describes the parallel terraces on the flanks of Glen Roy and Glen Spean (page 236), and expresses himself convinced "that the Glacial theory alone satisfies all the exigencies of the phenomenon" of the parallel roads.) I carefully examined that spot, owing to the sheep tracks [being] nearly but not quite parallel to the terrace. So much, again, for difference of observation. I do not pretend to say who is right.

LETTER 501. TO J.D. HOOKER. Down, October 12th, 1849.

I was heartily glad to get your last letter; but on my life your thanks for my very few and very dull letters quite scalded me. I have been very indolent and selfish in not having oftener written to you and kept my ears open for news which would have interested you; but I have not forgotten you. Two days after receiving your letter, there was a short leading notice about you in the "Gardeners' Chronicle" (501/1. The "Gardeners' Chronicle," 1849, page 628.); in which it is said you have discovered a noble crimson rose and thirty rhododendrons. I must heartily congratulate you on these discoveries, which will interest the public; and I have no doubt that you will have made plenty of most interesting botanical observations. This last letter shall be put with all your others, which are now safe together. I am very glad that you have got minute details about the terraces in the valleys: your description sounds curiously like the terraces in the Cordillera of Chili; these latter, however, are single in each valley; but you will hereafter see a description of these terraces in my "Geology of S. America." (501/2. "Geological Observations," pages 10 et passim.) At the end of your letter you speak about giving up Geology, but you must not think of it; I am sure your observations will be very interesting. Your account of the great dam in the Yangma valley is most curious, and quite full; I find that I did not at all understand its wonderful structure in your former letter. Your notion of glaciers pushing detritus into deep fiords (and ice floating fragments on their channels), is in many respects new to me; but I cannot help believing your dam is a lateral moraine: I can hardly persuade myself that the remains of floating ice action, at a period so immensely remote as when the Himalaya stood at a low level in the sea, would now be distinguishable. (501/3. Hooker's "Himalayan Journals," Volume II., page 121, 1854. In describing certain deposits in the Lachoong valley, Hooker writes: "Glaciers might have forced immense beds of gravel into positions that would dam up lakes between the ice and the flanks of the valley" (page 121). In a footnote he adds: "We are still very ignorant of many details of ice action, and especially of the origin of many enormous deposits which are not true moraines." Such deposits are referred to as occurring in the Yangma valley.) Your not having found scored boulders and solid rocks is an objection both to glaciers and floating ice; for it is certain that both produce such. I believe no rocks escape scoring, polishing and mammillation in the Alps, though some lose it easily when exposed. Are you familiar with appearance of ice-action? If I understand rightly, you object to the great dam having been produced by a glacier, owing to the dryness of the lateral valley and general infrequency of glaciers in Himalaya; but pray observe that we may fairly (from what we see in Europe) assume that the climate was formerly colder in India, and when the land stood at a lower height more snow might have fallen. Oddly enough, I am now inclined to believe that I saw a gigantic moraine crossing a valley, and formerly causing a lake above it in one of the great valleys (Valle del Yeso) of the Cordillera: it is a mountain of detritus, which has puzzled me. If you have any further opportunities, do look for scores on steep faces of rock; and here and there remove turf or matted parts to have a look. Again I beg, do not give up Geology:—I wish you had Agassiz's work and plates on Glaciers. (501/4. "Etudes sur les Glaciers." L. Agassiz, Neuchatel, 1840.) I am extremely sorry that the Rajah, ill luck to him, has prevented your crossing to Thibet; but you seem to have seen most interesting country: one is astonished to hear of Fuegian climate in India. I heard from the Sabines that you were thinking of giving up Borneo; I hope that this report may prove true.

LETTER 502. TO C. LYELL. Down, May 8th [1855].

The notion you refer to was published in the "Geological Journal" (502/1. "on the Transportal of Erratic Boulders from a lower to a higher Level." By C. Darwin.), Volume IV. (1848), page 315, with reference to all the cases which I could collect of boulders apparently higher than the parent rock.

The argument of probable proportion of rock dropped by sea ice compared to land glaciers is new to me. I have often thought of the idea of the viscosity and enormous momentum of great icebergs, and still think that the notion I pointed out in appendix to Ramsay's paper is probable, and can hardly help being applicable in some cases. (502/2. The paper by Ramsay has no appendix; probably, therefore Mr. Darwin's notes were published separately as a paper in the "Phil. Mag.") I wonder whether the "Phil. Journal [Magazine?.]" would publish it, if I could get it from Ramsay or the Geological Society. (502/3. "On the Power of Icebergs to make rectilinear, uniformly-directed grooves across a Submarine Undulatory Surface." By C. Darwin, "Phil. Mag." Volume X., page 96, 1855.) If you chance to meet Ramsay will you ask him whether he has it? I think it would perhaps be worth while just to call the N. American geologists' attention to the idea; but it is not worth any trouble. I am tremendously busy with all sorts of experiments. By the way, Hopkins at the Geological Society seemed to admit some truth in the idea of scoring by (viscid) icebergs. If the Geological Society takes so much [time] to judge of truth of notions, as you were telling me in regard to Ramsay's Permian glaciers (502/4. "On the Occurrence of angular, sub-angular, polished, and striated Fragments and Boulders in the Permian Breccia of Shropshire, Worcestershire, etc.; and on the Probable Existence of Glaciers and Icebergs in the Permian Epoch." By A.C. Ramsay, "Quart. Journ. Geol. Soc." Volume XI., page 185, 1855.), it will be as injurious to progress as the French Institut.

LETTER 503. TO J.D. HOOKER. Cliff Cottage, Bournemouth, [September] 21st [1862].

I am especially obliged to you for sending me Haast's communications. (503/1. "Quart. Journ. Geol. Soc." Volume XXI., pages 130, 133, 1865; Volume XXIII., page 342, 1867.) They are very interesting and grand about glacial and drift or marine glacial. I see he alludes to the whole southern hemisphere. I wonder whether he has read the "Origin." Considering your facts on the Alpine plants of New Zealand and remarks, I am particularly glad to hear of the geological evidence of glacial action. I presume he is sure to collect and send over the mountain rat of which he speaks. I long to know what it is. A frog and rat together would, to my mind, prove former connection of New Zealand to some continent; for I can hardly suppose that the Polynesians introduced the rat as game, though so esteemed in the Friendly Islands. Ramsay sent me his paper (503/2. "On the Glacial Origin of certain Lakes in Switzerland, etc." "Quart. Journ. Geol. Soc." Volume XVIII., page 185, 1862.) and asked my opinion on it. I agree with you and think highly of it. I cannot doubt that it is to a large extent true; my only doubt is, that in a much disturbed country, I should have thought that some depressions, and consequently lakes, would almost certainly have been left. I suggested a careful consideration of mountainous tropical countries such as Brazil, peninsula of India, etc.; if lakes are there, [they are] very rare. I should fully subscribe to Ramsay's views.

What presumption, as it seems to me, in the Council of Geological Society that it hesitated to publish the paper.

We return home on the 30th. I have made up [my] mind, if I can keep up my courage, to start on the Saturday for Cambridge, and stay the last few days of the [British] Association there. I do so hope that you may be there then.

LETTER 504. TO J.D. HOOKER. November 3rd [1864].

When I wrote to you I had not read Ramsay. (504/1. "On the Erosion of Valleys and Lakes: a Reply to Sir Roderick Murchison's Anniversary Address to the Geographical Society." "Phil. Mag." Volume XXVIII., page 293, 1864) How capitally it is written! It seems that there is nothing for style like a man's dander being put up. I think I agree largely with you about denudation—but the rocky-lake-basin theory is the part which interests me at present. It seems impossible to know how much to attribute to ice, running water, and sea. I did not suppose that Ramsay would deny that mountains had been thrown up irregularly, and that the depressions would become valleys. The grandest valleys I ever saw were at Tahiti, and here I do not believe ice has done anything; anyhow there were no erratics. I said in my S. American Geology (504/2. "Finally, the conclusion at which I have arrived with respect to the relative powers of rain, and sea-water on the land is, that the latter is by far the most efficient agent, and that its chief tendency is to widen the valleys, whilst torrents and rivers tend to deepen them and to remove the wreck of the sea's destroying action" ("Geol. Observations," pages 66, 67).) that rivers deepen and the sea widens valleys, and I am inclined largely to stick to this, adding ice to water. I am sorry to hear that Tyndall has grown dogmatic. H. Wedgwood was saying the other day that T.'s writings and speaking gave him the idea of intense conceit. I hope it is not so, for he is a grand man of science.

...I have had a prospectus and letter from Andrew Murray (504/3. See Volume II., Letters 379, 384, etc.) asking me for suggestions. I think this almost shows he is not fit for the subject, as he gives me no idea what his book will be, excepting that the printed paper shows that all animals and all plants of all groups are to be treated of. Do you know anything of his knowledge?

In about a fortnight I shall have finished, except concluding chapter, my book on "Variation under Domestication"; (504/4. Published in 1868.) but then I have got to go over the whole again, and this will take me very many months. I am able to work about two hours daily.

LETTER 505. TO J.D. HOOKER. Down [July, 1865].

I was glad to read your article on Glaciers, etc., in Yorkshire. You seem to have been struck with what most deeply impressed me at Glen Roy (wrong as I was on the whole subject)—viz. the marvellous manner in which every detail of surface of land had been preserved for an enormous period. This makes me a little sceptical whether Ramsay, Jukes, etc., are not a little overdoing sub-aerial denudation.

In the same "Reader" (505/1. Sir J.D. Hooker wrote to Darwin, July 13th, 1865, from High Force Inn, Middleton, Teesdale: "I am studying the moraines all day long with as much enthusiasm as I am capable of after lying in bed till nine, eating heavy breakfasts, and looking forward to dinner as the summum bonum of existence." The result of his work, under the title "Moraines of the Tees Valley," appeared in the "Reader" (July 15th, 1865, page 71), of which Huxley was one of the managers or committee-men, and Norman Lockyer was scientific editor ("Life and Letters of T.H. Huxley," I., page 211). Hooker describes the moraines and other evidence of glacial action in the upper part of the Tees valley, and speaks of the effect of glaciers in determining the present physical features of the country.) there was a striking article on English and Foreign Men of Science (505/2. "British and Foreign Science," "The Reader," loc. cit., page 61. The writer of the article asserts the inferiority of English scientific workers.), and I think unjust to England except in pure Physiology; in biology Owen and R. Brown ought to save us, and in Geology we are most rich.

It is curious how we are reading the same books. We intend to read Lecky and certainly to re-read Buckle—which latter I admired greatly before. I am heartily glad you like Lubbock's book so much. It made me grieve his taking to politics, and though I grieve that he has lost his election, yet I suppose, now that he is once bitten, he will never give up politics, and science is done for. Many men can make fair M.P.'s; and how few can work in science like him!

I have been reading a pamphlet by Verlot on "Variation of Flowers," which seems to me very good; but I doubt whether it would be worth your reading. it was published originally in the "Journal d'Hort.," and so perhaps you have seen it. It is a very good plan this republishing separately for sake of foreigners buying, and I wish I had tried to get permission of Linn. Soc. for my Climbing paper, but it is now too late.

Do not forget that you have my paper on hybridism, by Max Wichura. (505/3. Wichura, M.E., "L'Hybridisation dans le regne vegetal etudiee sur les Saules," "Arch. Sci. Phys. Nat." XXIII., page 129, 1865.)

I hope you are returned to your work, refreshed like a giant by your huge breakfasts. How unlucky you are about contagious complaints with your children!

I keep very weak, and had much sickness yesterday, but am stronger this morning.

Can you remember how we ever first met? (505/4. See "Life and Letters," II., page 19.) It was in Park Street; but what brought us together? I have been re-reading a few old letters of yours, and my heart is very warm towards you.

LETTER 506. TO C. LYELL. Down, March 8th [1866].

(506/1. In a letter from Sir Joseph Hooker to Mr. Darwin on February 21st, 1866, the following passage occurs: "I wish I could explain to you my crude notions as to the Glacial period and your position towards it. I suppose I hold this doctrine: that there was a Glacial period, but that it was not one of universal cold, because I think that the existing distribution of glaciers is sufficiently demonstrative of the proposition that by comparatively slight redispositions of sea and land, and perhaps axis of globe, you may account for all the leading palaeontological phenomena." This letter was sent by Mr. Darwin to Sir Charles Lyell, and the latter, writing on March 1st, 1866, expresses his belief that "the whole globe must at times have been superficially cooler. Still," he adds, "during extreme excentricity the sun would make great efforts to compensate in perihelion for the chill of a long winter in aphelion in one hemisphere, and a cool summer in the other. I think you will turn out to be right in regard to meridional lines of mountain-chains by which the migrations across the equator took place while there was contemporaneous tropical heat of certain lowlands, where plants requiring heat and moisture were saved from extinction by the heat of the earth's surface, which was stored up in perihelion, being prevented from radiating off freely into space by a blanket of aqueous vapour caused by the melting of ice and snow. But though I am inclined to profit by Croll's maximum excentricity for the glacial period, I consider it quite subordinate to geographical causes or the relative position of land and sea and the abnormal excess of land in polar regions." In another letter (March 5th, 1866) Lyell writes: "In the beginning of Hooker's letter to you he speaks hypothetically of a change in the earth's axis as having possibly co-operated with redistribution of land and sea in causing the cold of the Glacial period. Now, when we consider how extremely modern, zoologically and botanically, the Glacial period is proved to be, I am shocked at any one introducing, with what I may call so much levity, so organic a change as a deviation in the axis of the planet...' (see Lyell's "Principles," 1875, Chapter XIII.; also a letter to Sir Joseph Hooker printed in the "Life of Sir Charles Lyell," Volume II., page 410.))

Many thanks for your interesting letter. From the serene elevation of my old age I look down with amazement at your youth, vigour, and indomitable energy. With respect to Hooker and the axis of the earth, I suspect he is too much overworked to consider now any subject properly. His mind is so acute and critical that I always expect to hear a torrent of objections to anything proposed; but he is so candid that he often comes round in a year or two. I have never thought on the causes of the Glacial period, for I feel that the subject is beyond me; but though I hope you will own that I have generally been a good and docile pupil to you, yet I must confess that I cannot believe in change of land and water, being more than a subsidiary agent. (506/2. In Chapter XI. of the "Origin," Edition V., 1869, page 451, Darwin discusses Croll's theory, and is clearly inclined to trust in Croll's conclusion that "whenever the northern hemisphere passes through a cold period the temperature of the southern hemisphere is actually raised..." In Edition VI., page 336, he expresses his faith even more strongly. Mr. Darwin apparently sent his MS. on the climate question, which was no doubt prepared for a new edition of the "Origin," to Sir Charles. The arrival of the MS. is acknowledged in a letter from Lyell on March 10th, 1866 ("Life of Sir Charles Lyell," II., page 408), in which the writer says that he is "more than ever convinced that geographical changes...are the principal and not the subsidiary causes.") I have come to this conclusion from reflecting on the geographical distribution of the inhabitants of the sea on the opposite sides of our continents and of the inhabitants of the continents themselves.

LETTER 507. TO C. LYELL. Down, September 8th [1866].

Many thanks for the pamphlet, which was returned this morning. I was very glad to read it, though chiefly as a psychological curiosity. I quite follow you in thinking Agassiz glacier-mad. (507/1. Agassiz's pamphlet, ("Geology of the Amazons") is referred to by Lyell in a letter written to Bunbury in September, 1866 ("Life of Sir Charles Lyell," II., page 409): "Agassiz has written an interesting paper on the 'Geology of the Amazons,' but, I regret to say, he has gone wild about glaciers, and has actually announced his opinion that the whole of the great valley, down to its mouth in latitude 0 deg., was filled by ice..." Agassiz published a paper, "Observations Geologiques faites dans la Vallee de l'Amazone," in the "Comptes Rendus," Volume LXIV., page 1269, 1867. See also a letter addressed to M. Marcou, published in the "Bull. Soc. Geol. France," Volume XXIV., page 109, 1866.) His evidence reduces itself to supposed moraines, which would be difficult to trace in a forest-clad country; and with respect to boulders, these are not said to be angular, and their source cannot be known in a country so imperfectly explored. When I was at Rio, I was continually astonished at the depth (sometimes 100 feet) to which the granitic rocks were decomposed in situ, and this soft matter would easily give rise to great alluvial accumulations; I well remember finding it difficult to draw a line between the alluvial matter and the softened rock in situ. What a splendid imagination Agassiz has, and how energetic he is! What capital work he would have done, if he had sucked in your "Principles" with his mother's milk. It is wonderful that he should have written such wild nonsense about the valley of the Amazon; yet not so wonderful when one remembers that he once maintained before the British Association that the chalk was all deposited at once.

With respect to the insects of Chili, I knew only from Bates that the species of Carabus showed no special affinity to northern species; from the great difference of climate and vegetation I should not have expected that many insects would have shown such affinity. It is more remarkable that the birds on the broad and lofty Cordillera of Tropical S. America show no affinity with European species. The little power of diffusion with birds has often struck me as a most singular fact—even more singular than the great power of diffusion with plants. Remember that we hope to see you in the autumn.

P.S.—There is a capital paper in the September number of "Annals and Magazine," translated from Pictet and Humbert, on Fossil Fish of Lebanon, but you will, I daresay, have received the original. (507/2. "Recent Researches on the Fossil Fishes of Mount Lebanon," "Ann. Mag. Nat. Hist." Volume XVIII., page 237, 1866.) It is capital in relation to modification of species; I would not wish for more confirmatory facts, though there is no direct allusion to the modification of species. Hooker, by the way, gave an admirable lecture at Nottingham; I read it in MS., or rather, heard it. I am glad it will be published, for it was capital. (507/3. Sir Joseph Hooker delivered a lecture at the Nottingham meeting of the British Association (1866) on "Insular Floras," published in the "Gardeners' Chronicle," 1867. See Letters 366-377, etc.)

Sunday morning.

P.S.—I have just received a letter from Asa Gray with the following passage, so that, according to this, I am the chief cause of Agassiz's absurd views:—

"Agassiz is back (I have not seen him), and he went at once down to the National Academy of Sciences, from which I sedulously keep away, and, I hear, proved to them that the Glacial period covered the whole continent of America with unbroken ice, and closed with a significant gesture and the remark: 'So here is the end of the Darwin theory.' How do you like that?

"I said last winter that Agassiz was bent on covering the whole continent with ice, and that the motive of the discovery he was sure to make was to make sure that there should be no coming down of any terrestrial life from Tertiary or post-Tertiary period to ours. You cannot deny that he has done his work effectually in a truly imperial way."

LETTER 508. TO C. LYELL. Down, July 14th, 1868.

Mr. Agassiz's book has been read aloud to me, and I am wonderfully perplexed what to think about his precise statements of the existence of glaciers in the Ceara Mountains, and about the drift formation near Rio. (508/1. "Sur la Geologie de l'Amazone," by MM. Agassiz and Continho, "Bull. Soc. Geol. France," Volume XXV., page 685, 1868. See also "A Journey in Brazil," by Professor and Mrs. Louis Agassiz, Boston, 1868.) There is a sad want of details. Thus he never mentions whether any of the blocks are angular, nor whether the embedded rounded boulders, which cannot all be disintegrated, are scored. Yet how can so experienced an observer as A. be deceived about lateral and terminal moraines? If there really were glaciers in the Ceara Mountains, it seems to me one of the most important facts in the history of the inorganic and organic world ever observed. Whether true or not, it will be widely believed, and until finally decided will greatly interfere with future progress on many points. I have made these remarks in the hope that you will coincide. If so, do you think it would be possible to persuade some known man, such as Ramsay, or, what would be far better, some two men, to go out for a summer trip, which would be in many respects delightful, for the sole object of observing these phenomena in the Ceara Mountains, and if possible also near Rio? I would gladly put my name down for 50 pounds in aid of the expense of travelling. Do turn this over in your mind. I am so very sorry not to have seen you this summer, but for the last three weeks I have been good for nothing, and have had to stop almost all work. I hope we may meet in the autumn.

LETTER 509. TO JAMES CROLL. Down, November 24th, 1868.

I have read with the greatest interest the last paper which you have kindly sent me. (509/1. Croll discussed the power of icebergs as grinding and striating agents in the latter part of a paper ("On Geological Time, and the probable Dates of the Glacial and the Upper Miocene Period") published in the "Philosophical Magazine," Volume XXXV., page 363, 1868, Volume XXXVI., pages 141, 362, 1868. His conclusion was that the advocates of the Iceberg theory had formed "too extravagant notions regarding the potency of floating ice as a striating agent.") If we are to admit that all the scored rocks throughout the more level parts of the United States result from true glacier action, it is a most wonderful conclusion, and you certainly make out a very strong case; so I suppose I must give up one more cherished belief. But my object in writing is to trespass on your kindness and ask a question, which I daresay I could answer for myself by reading more carefully, as I hope hereafter to do, all your papers; but I shall feel much more confidence in a brief reply from you. Am I right in supposing that you believe that the glacial periods have always occurred alternately in the northern and southern hemispheres, so that the erratic deposits which I have described in the southern parts of America, and the glacial work in New Zealand, could not have been simultaneous with our Glacial period? From the glacial deposits occurring all round the northern hemisphere, and from such deposits appearing in S. America to be as recent as in the north, and lastly, from there being some evidence of the former lower descent of glaciers all along the Cordilleras, I inferred that the whole world was at this period cooler. It did not appear to me justifiable without distinct evidence to suppose that the N. and S. glacial deposits belonged to distinct epochs, though it would have been an immense relief to my mind if I could have assumed that this had been the case. Secondly, do you believe that during the Glacial period in one hemisphere the opposite hemisphere actually becomes warmer, or does it merely retain the same temperature as before? I do not ask these questions out of mere curiosity; but I have to prepare a new edition of my "Origin of Species," and am anxious to say a few words on this subject on your authority. I hope that you will excuse my troubling you.

LETTER 510. TO J. CROLL. Down, January 31st, 1869.

To-morrow I will return registered your book, which I have kept so long. I am most sincerely obliged for its loan, and especially for the MS., without which I should have been afraid of making mistakes. If you require it, the MS. shall be returned. Your results have been of more use to me than, I think, any other set of papers which I can remember. Sir C. Lyell, who is staying here, is very unwilling to admit the greater warmth of the S. hemisphere during the Glacial period in the N.; but, as I have told him, this conclusion which you have arrived at from physical considerations, explains so well whole classes of facts in distribution, that I must joyfully accept it; indeed, I go so far as to think that your conclusion is strengthened by the facts in distribution. Your discussion on the flowing of the great ice-cap southward is most interesting. I suppose that you have read Mr. Moseley's recent discussion on the force of gravity being quite insufficient to account for the downward movement of glaciers (510/1. Canon Henry Moseley, "On the Mechanical Impossibility of the Descent of Glaciers by their Weight only." "Proc. R. Soc." Volume XVII., page 202, 1869; "Phil. Mag." Volume XXXVII., page 229, 1869.): if he is right, do you not think that the unknown force may make more intelligible the extension of the great northern ice-cap? Notwithstanding your excellent remarks on the work which can be effected within the million years (510/2. In his paper "On Geological Time, and the probable Date of the Glacial and the Upper Miocene Period" ("Phil. Mag." Volume XXXV., page 363, 1868), Croll endeavours to convey to the mind some idea of what a million years really is: "Take a narrow strip of paper, an inch broad or more, and 83 feet 4 inches in length, and stretch it along the wall of a large hall, or round the walls of an apartment somewhat over 20 feet square. Recall to memory the days of your boyhood, so as to get some adequate conception of what a period of a hundred years is. Then mark off from one of the ends of the strip one-tenth of an inch. The one-tenth of an inch will then represent a hundred years, and the entire length of the strip a million of years" (loc. cit., page 375).), I am greatly troubled at the short duration of the world according to Sir W. Thomson (510/3. In a paper communicated to the Royal Society of Edinburgh, Lord Kelvin (then Sir William Thomson) stated his belief that the age of our planet must be more than twenty millions of years, but not more than four hundred millions of years ("Trans. R. Soc. Edinb." Volume XXIII., page 157, 1861, "On the Secular Cooling of the Earth."). This subject has been recently dealt with by Sir Archibald Geikie in his address as President of the Geological Section of the British Association, 1899 ("Brit. Assoc. Report," Dover Meeting, 1899, page 718).), for I require for my theoretical views a very long period BEFORE the Cambrian formation. If it would not trouble you, I should like to hear what you think of Lyell's remark on the magnetic force which comes from the sun to the earth: might not this penetrate the crust of the earth and then be converted into heat? This would give a somewhat longer time during which the crust might have been solid; and this is the argument on which Sir W. Thomson seems chiefly to rest. You seem to argue chiefly on the expenditure of energy of all kinds by the sun, and in this respect Lyell's remark would have no bearing.

My new edition of the "Origin" (510/4. Fifth edition, May, 1869.) will be published, I suppose, in about two months, and for the chance of your liking to have a copy I will send one.

P.S.—I wish that you would turn your astronomical knowledge to the consideration whether the form of the globe does not become periodically slightly changed, so as to account for the many repeated ups and downs of the surface in all parts of the world. I have always thought that some cosmical cause would some day be discovered.

LETTER 511. TO C. LYELL. Down, July 12th [1872].

I have been glad to see the enclosed and return it. It seems to me very cool in Agassiz to doubt the recent upheaval of Patagonia, without having visited any part; and he entirely misrepresents me in saying that I infer upheaval from the form of the land, as I trusted entirely to shells embedded and on the surface. It is simply monstrous to suppose that the terraces stretching on a dead level for leagues along the coast, and miles in breadth, and covered with beds of stratified gravel, 10 to 30 feet in thickness, are due to subaerial denudation.

As for the pond of salt-water twice or thrice the density of sea-water, and nearly dry, containing sea-shells in the same relative proportions as on the adjoining coast, it almost passes my belief. Could there have been a lively midshipman on board, who in the morning stocked the pool from the adjoining coast?

As for glaciation, I will not venture to express any opinion, for when in S. America I knew nothing about glaciers, and perhaps attributed much to icebergs which ought to be attributed to glaciers. On the other hand, Agassiz seems to me mad about glaciers, and apparently never thinks of drift ice.

I did see one clear case of former great extension of a glacier in T. del Fuego.

LETTER 512. TO J. GEIKIE.

(512/1. The following letter was in reply to a request from Prof. James Geikie for permission to publish Mr. Darwin's views, communicated in a previous letter (November 1876), on the vertical position of stones in gravelly drift near Southampton. Prof. Geikie wrote (July 15th, 1880): "You may remember that you attributed the peculiar position of those stones to differential movements in the drift itself arising from the slow melting of beds of frozen snow interstratified into the gravels...I have found this explanation of great service even in Scotland, and from what I have seen of the drift-gravels in various parts of southern England and northern France, I am inclined to think that it has a wide application.")

Down, July 19th, 1880.

Your letter has pleased me very much, and I truly feel it an honour that anything which I wrote on the drift, etc., should have been of the least use or interest to you. Pray make any use of my letter (512/2. Professor James Geikie quotes the letter in "Prehistoric Europe," London, 1881 (page 141). Practically the whole of it is given in the "Life and Letters," III., page 213.): I forget whether it was written carefully or clearly, so pray touch up any passages that you may think fit to quote.

All that I have seen since near Southampton and elsewhere has strengthened my notion. Here I live on a chalk platform gently sloping down from the edge of the escarptment to the south (512/3. Id est, sloping down from the escarpment which is to the south.) (which is about 800 feet in height) to beneath the Tertiary beds to the north. The (512/4. From here to the end of the paragraph is quoted by Prof. Geikie, loc. cit., page 142.) beds of the large and broad valleys (and only of these) are covered with an immense mass of closely packed broken and angular flints; in which mass the skull of the musk-ox [musk-sheep] and woolly elephant have been found. This great accumulation of unworn flints must therefore have been made when the climate was cold, and I believe it can be accounted for by the larger valleys having been filled up to a great depth during a large part of the year with drifted frozen snow, over which rubbish from the upper parts of the platforms was washed by the summer rains, sometimes along one line and sometimes along another, or in channels cut through the snow all along the main course of the broad valleys.

I suppose that I formerly mentioned to you the frequent upright position of elongated flints in the red clayey residue over the chalk, which residue gradually subsides into the troughs and pipes corroded in the solid chalk. This letter is very untidy, but I am tired.

P.S. Several palaeolithic celts have recently been found in the great angular gravel-bed near Southampton in several places.

LETTER 513. TO D. MACKINTOSH. Down, November 13th, 1880.

Your discovery is a very interesting one, and I congratulate you on it. (513/1. "On the Precise Mode of Accumulation and Derivation of the Moel-Tryfan Shelly Deposits; on the Discovery of Similar High-level Deposits along the Eastern Slopes of the Welsh Mountains; and on the Existence of Drift-Zones, showing probable Variations in the Rate of Submergence." By D. Mackintosh, "Quart. Journ. Geol. Soc." Volume XXXVII., pages 351-69, 1881. [Read April 27th, 1881.]) I failed to find shells on Moel Tryfan, but was interested by finding ("Philosoph. Mag." 3rd series, Volume XXI., page 184) shattered rocks (513/2. In reviewing the work by previous writers on the Moel-Tryfan deposits, Mackintosh refers to Darwin's "very suggestive description of the Moel-Tryfan deposits...Under the drift he saw that the surface of the slate, TO A DEPTH OF SEVERAL FEET, HAD BEEN SHATTERED AND CONTORTED IN A VERY PECULIAR MANNER." The contortion of the slate, which Mackintosh regarded as "the most interesting of the Moel-Tryfan phenomena," had not previously been regarded as "sufficiently striking to arrest attention" by any geologist except Darwin. The Pleistocene gravel and sand containing marine shells on Moel-Tryfan, about five miles south-east of Caernarvon, have been the subject of considerable controversy. By some geologists the drift deposits have been regarded as evidence of a great submergence in post-Pliocene times, while others have explained their occurrence at a height of 1300 feet by assuming that the gravel and sand had been thrust uphill by an advancing ice-sheet. (See H.B. Woodward, "Geology of England and Wales," Edition II., 1887, pages 491, 492.) Darwin attributed the shattering and contorting of the slates below the drift to "icebergs grating over the surface.") and far-distant rounded boulders, which I attributed to the violent impact of icebergs or coast-ice. I can offer no opinion on whether the more recent changes of level in England were or were not accompanied by earthquakes. It does not seem to me a correct expression (which you use probably from haste in your note) to speak of elevations or depressions as caused by earthquakes: I suppose that every one admits that an earthquake is merely the vibration from the fractured crust when it yields to an upward or downward force. I must confess that of late years I have often begun to suspect (especially when I think of the step-like plains of Patagonia, the heights of which were measured by me) that many of the changes of level in the land are due to changes of level in the sea. (513/3. This view is an agreement with the theory recently put forward by Suess in his "Antlitz der Erde" (Prag and Leipzig, 1885). Suess believes that "the local invasions and transgressions of the continental areas by the sea" are due to "secular movements of the hydrosphere itself." (See J. Geikie, F.R.S., Presidential Address before Section E at the Edinburgh Meeting of the British Association, "Annual Report," page 794.) I suppose that there can be no doubt that when there was much ice piled up in the Arctic regions the sea would be attracted to them, and the land on the temperate regions would thus appear to have risen. There would also be some lowering of the sea by evaporation and the fixing of the water as ice near the Pole.

I shall read your paper with much interest when published.

LETTER 514. TO J. GEIKIE. Down, December 13th, 1880.

You must allow me the pleasure of thanking you for the great interest with which I have read your "Prehistoric Europe." (514/1. "Prehistoric Europe: a Geological Sketch," London, 1881.) Nothing has struck me more than the accumulated evidence of interglacial periods, and assuredly the establishment of such periods is of paramount importance for understanding all the later changes of the earth's surface. Reading your book has brought vividly before my mind the state of knowledge, or rather ignorance, half a century ago, when all superficial matter was classed as diluvium, and not considered worthy of the attention of a geologist. If you can spare the time (though I ask out of mere idle curiosity) I should like to hear what you think of Mr. Mackintosh's paper, illustrated by a little map with lines showing the courses or sources of the erratic boulders over the midland counties of England. (514/2. "Results of a Systematic Survey, in 1878, of the Directions and Limits of Dispersion, Mode of Occurrence, and Relation to Drift-Deposits of the Erratic Blocks or Boulders of the West of England and East of Wales, including a Revision of Many Years' Previous Observations," D. Mackintosh, "Quart. Journ. Geol. Soc." Volume XXXV., page 425, 1879.) It is a little suspicious their ending rather abruptly near Wolverhampton, yet I must think that they were transported by floating ice. Fifty years ago I knew Shropshire well, and cannot remember anything like till, but abundance of gravel and sand beds, with recent marine shells. A great boulder (514/3. Mackintosh alludes (loc. cit., page 442) to felstone boulders around Ashley Heath, the highest ground between the Pennine and Welsh Hills north of the Wrekin; also to a boulder on the summit of the eminence (774 feet above sea-level), "probably the same as that noticed many years ago by Mr. Darwin." In a later paper, "On the Correlation of the Drift-Deposits of the North-West of England with those of the Midland and Eastern Counties" ("Quart. Journ. Geol. Soc." Volume XXXVI., page 178, 1880) Mackintosh mentions a letter received from Darwin, "who was the first to elucidate the boulder-transporting agency of floating ice," containing an account of the great Ashley Heath boulder, which he was the first to discover and expose,...so as to find that the block rested on fragments of New Red Sandstone, one of which was split into two and deeply scored...The facts mentioned in the letter from Mr. Darwin would seem to show that the boulder must have fallen through water from floating ice with a force sufficient to split the underlying lump of sandstone, but not sufficient to crush it.") which I had undermined on the summit of Ashley Heath, 720 (?) feet above the sea, rested on clean blocks of the underlying red sandstone. I was also greatly interested by your long discussion on the Loss (514/4. For an account of the Loss of German geologists—"a fine-grained, more or less homogeneous, consistent, non-plastic loam, consisting of an intimate admixture of clay and carbonate of lime," see J. Geikie, loc. cit., page 144 et seq.); but I do not feel satisfied that all has been made out about it. I saw much brick-earth near Southampton in some manner connected with the angular gravel, but had not strength enough to make out relations. It might be worth your while to bear in mind the possibility of fine sediment washed over and interstratified with thick beds of frozen snow, and therefore ultimately dropped irrespective of the present contour of the country.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14     Next Part
Home - Random Browse