p-books.com
Micrographia
by Robert Hooke
Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse

Now, these being the proprieties of every single refracted Ray of light, it will be easie enough to consider what must be the result of very many such Rays collateral: As if we suppose infinite such Rays interjacent between AKSB and ANOB, which arc the terminating: For in this case the Ray AKSB will have its Red triangle intire, as lying next to the dark or quiet medium, but the other side of it BS will have no Blue, because the medium adjacent to it SBO, is mov'd or enlightned, and consequently that light does destroy the colour. So likewise will the Ray ANOB lose its Red, because the adjacent medium is mov'd or enlightned, but the other side of the Ray that is adjacent to the dark, namely, AHO will preserve its Blue entire, and these Rays must be so far produc'd as till AN and BR cut each other, before there will be any Green produc'd. From these Proprieties well consider'd, may be deduc'd the reasons of all the Phaenomena of the prisme, and of the Globules or drops of Water which conduce to the production of the Rainbow.

Next for the impression they make on the Retina, we will further examine this Hypothesis: Suppose therefore ABCDEF, in the fifth Figure, to represent the Ball of the eye: on the Cornea of which ABC two Rays GACH and KCAI (which are the terminating Rays of a luminous body) falling, are by the refraction thereof collected or converg'd into two points at the bottom of the eye. Now, because these terminating Rays, and all the intermediate ones which come from any part of the luminous body, are suppos'd by some sufficient refraction before they enter the eye, to have their pulses made oblique to their progression, and consequently each Ray to have potentially superinduc'd two proprieties, or colours, viz., a Red on the one side, and a Blue on the other, which notwithstanding are never actually manifest, but when this or that Ray has the one or the other side of it bordering on a dark or unmov'd medium, therefore as soon as these Rays are entred into the eye and so have one side of each of them bordering on a dark part of the humours of the eye, they will each of them actually exhibit some colour; therefore ADC the production of GACH will exhibit a Blue, because the side CD is adjacent to the dark medium CQDC, but nothing of a Red, because its side AD is adjacent to the enlightned medium ADFA: And all the Rays that from the points of the luminous body are collected on the parts of the Retina between D and F shall have their Blue so much the more diluted by how much the farther these points of collection are distant from D towards F; and the Ray AFC the production of KCAI, will exhibit a Red, because the side AF is adjacent to the dark or quiet medium of the eye APFA, but nothing of a Blue, because its side CF is adjacent to the enlightned medium CFDC, and all the Rays from the intermediate parts of the luminous body that are collected between F and D shall have their Red so much the more diluted, by how much the farther they are distant from F towards D.

Now, because by the refraction in the Cornea, and some other parts of the eye, the sides of each Ray, which before were almost parallel, are made to converge and meet in a point at the bottom of the eye, therefore that side of the pulse which preceded before these refractions, shall first touch the Retina, and the other side last. And therefore according as this or that side, or end of the pulse shall be impeded, accordingly will the impressions on the Retina be varied; therefore by the Ray GACH refracted by the Cornea to D there shall be on that point a stroke or impression confus'd, whose weakest end, namely, that by the line CD shall precede, and the stronger, namely, that by the line AD shall follow. And by the Ray KCAI refracted to F, there shall be on that part a confus'd stroke or impression, whose strongest part, namely, that by the line CF shal precede, and whose weakest or impeded, namely, that by the line AF shall follow, and all the intermediate points between F and D will receive impressions from the converg'd Rays so much the more like the impressions on F and D by how much the nearer they approach that or this.

From the consideration of the proprieties of which impressions, we may collect these short definitions of Colours: That Blue is an impression on the Retina of an oblique and confus'd pulse of light, whose weakest part precedes, and whose strongest follows. And, that Red is an impression on the Retina of an oblique and confus'd pulse of light, whose strongest part precedes, and whose weakest follows.

Which proprieties, as they have been already manifested, in the Prisme and falling drops of Rain, to be the causes of the colours there generated, may be easily found to be the efficients also of the colours appearing in thin laminated transparent bodies; for the explication of which, all this has been premised.

And that this is so, a little closer examination of the Phaenomena and the Figure of the body, by this Hypothesis will make evident.

For first (as we have already observed) the laminated body must be of a determinate thickness, that is, it must not be thinner then such a determinate quantity; for I have always observ'd, that neer the edges of those which are exceeding thin, the colours disappear, and the part grows white; nor must it be thicker then another determinate quantity; for I have likewise observ'd, that beyond such a thickness, no colours appear'd, but the Plate looked white, between which two determinate thicknesses were all the colour'd Rings; of which in some substances I have found ten or twelve, in others not half so many, which I suppose depends much upon the transparency of the laminated body. Thus though the consecutions are the same in the scumm or the skin on the top of metals; yet in those consecutions in the same colour is not so often repeated as in the consecutions in thin Glass, or in Sope-water, or any other more transparent and glutinous liquor; for in these I have observ'd, Red, Yellow, Green, Blue, Purple; Red, Yellow, Green, Blue, Purple; Red, Yellow, Green, Blue, Purple; Red, Yellow, &c. to succeed each other, ten or twelve times, but in the other more opacous bodies the consecutions will not be half so many.

And therefore secondly, the laminated body must be transparent, and this I argue from this, that I have not been able to produce any colour at all with an opacous body, though never so thin. And this I have often try'd, by pressing small Globule of Mercury between two smooth Plates of Glass, whereby I have reduc'd that body to a much greater thinness then was requisite to exhibit the colours with a transparent body.

Thirdly, there must be a considerable reflecting body adjacent to the under or further side of the lamina or plate: for this I always found, that the greater that reflection was, the more vivid were the appearing colours.

From which Observations, is most evident, that the reflection from the under or further side of the body is the principal cause of the production of these colours; which, that it is so, and how it conduces to that effect, I shall further explain in the following Figure, which is here described of a very great thickness, as if it had been view'd through the Microscope; and 'tis indeed much thicker than any Microscope (I have yet us'd) has been able to shew me those colour'd plates of Glass, or Muscovie-glass, which I have not without much trouble view'd with it, for though I have endeavoured to magnifie them as much as the Glasses were capable of, yet are they so exceeding thin, that I have not hitherto been able positively to determine their thickness. This Figure therefore I here represent, is wholy Hypothetical.

Let ABCDHFE in the sixth Figure be a frustum of Muscovy-glass, thinner toward the end AE, and thicker towards DF. Let us first suppose the Ray aghb coming from the Sun, of some remote luminous object to fall obliquely on the thinner plate BAE, part therefore is reflected back by cghd, the first Superficies; whereby the perpendicular pulse ab is after reflexion propagated by cd, cd, equally remote from each other with ab, ab, so that ag + gc, or bh + hd are either of them equal to aa, as is also cc, but the body BAE being transparent, a part of the light of this Ray is refracted in the surface AB, and propagated by gikh to the surface EF, whence it is reflected and refracted again by the surface AB. So that after two refractions and one reflection, there is propagated a kind of fainter Ray emnf, whose pulse is not only weaker by reason of the two refractions in the surface AB, but by reason of the time spent in passing and repassing between the two surfaces AB and EF, ef which is this fainter or weaker pulse comes behind the pulse cd; so that hereby (the surfaces AB, and EF being so neer together, that the eye cannot discriminate them from one) this confus'd or duplicated pulse, whose strongest part precedes, and whose weakest follows, does produce on the Retina, (or the optick nerve that covers the bottom of the eye) the sensation of a Yellow.

And secondly, this Yellow will appear so much the deeper, by how much the further back towards the middle between cd and cd the spurious pulse ef is remov'd, as in 2 where the surface BC being further remov'd from EF, the weaker pulse ef will be nearer to the middle, and will make an impression on the eye of a Red.

But thirdly, if the two reflecting surfaces be yet further remov'd asunder (as in 3 CD and EF are) then will the weaker pulse be so farr behind, that it will be more then half the distance between cd and cd. And in this case it will rather seem to precede the following stronger pulse, then to follow the preceding one, and consequently a Blue will be generated. And when the weaker pulse is just in the middle between two strong ones, then is a deep and lovely Purple generated; but when the weaker pulse ef is very neer to cd, then is there generated a Green, which will be bluer, or yellower, according as the approximate weak pulse does precede or follow the stronger.

Now fourthly, if the thicker Plate chance to be cleft into two thinner Plates, as CDFE is divided into two Plates by the surface GH then from the composition arising from the three reflections in the surfaces CD, GH, and EF, there will be generated several compounded or mixt colours, which will be very differing, according as the proportion between the thicknesses of those two divided Plates CDHG, and GHFE are varied.

And fifthly, if these surfaces CD and FE are further remov'd asunder, the weaker pulse will yet lagg behind much further, and not onely be coincident with the second, cd, but lagg behind that also, and that so much the more, by how much the thicker the Plate be; so that by degrees it will be coincident with the third cd backward also, and by degrees, as the Plate grows thicker with a fourth, and so onward to a fifth, sixth, seventh, or eighth; so that if there be a thin transparent body, that from the greatest thinness requisite to produce colours, does, in the manner of a Wedge, by degrees grow to the greatest thickness that a Plate can be of, to exhibit a colour by the reflection of Light from such a body, there shall be generated several consecutions of colours, whose order from the thin end towards the thick, shall be Yellow, Red, Purple, Blue, Green; Yellow, Red, Purple, Blue, Green; Yellow, Red, Purple, Blue, Green; Yellow, &c. and these so often repeated, as the weaker pulse does lose paces with its Primary, or first pulse, and is coincident with a second, third, fourth, fifth, sixth, &c. pulse behind the first. And this, as it is coincident, or follows from the first Hypothesis I took of colours, so upon experiment have I found it in multitudes of instances that seem to prove it. One thing which seems of the greatest concern in this Hypothesis, is to determine the greatest or least thickness requisite for these effects, which, though I have not been wanting in attempting, yet so exceeding thin are these coloured Plates, and so imperfect our Microscope, that I have not been hitherto successfull, though if my endeavours shall answer my expectations, I shall hope to gratifie the curious Reader with some things more remov'd beyond our reach hitherto.

Thus have I, with as much brevity as I was able, endeavoured to explicate (Hypothetically at least) the causes of the Phaenomena I formerly recited, on the consideration of which I have been the more particular.

First, because I think these I have newly given are capable of explicating all the Phaenomena of colours, not onely of those appearing in the Prisme, Water-drop, or Rainbow, and in laminated or plated bodies, but of all that are in the world, whether they be fluid or solid bodies, whether in thick or thin, whether transparent, or seemingly opacous, as I shall in the next Observation further endeavour to shew. And secondly, because this being one of the two ornaments of all bodies discoverable by the sight, whether looked on with, or without a Microscope, it seem'd to deserve (somewhere in this Tract, which contains a description of the Figure and Colour of some minute bodies) to be somewhat the more intimately enquir'd into.

* * * * *

Observ. X. Of Metalline, and other real Colours.

Having in the former Discourse, from the Fundamental cause of Colour, made it probable, that there are but two Colours, and shewn, that the Phantasm of Colour is caus'd by the sensation of the oblique or uneven pulse of Light which is capable of no more varieties than two that arise from the two sides of the oblique pulse, though each of those be capable of infinite gradations or degrees (each of them beginning from White, and ending the one in the deepest Scarlet or Yellow, the other in the deepest Blue) I shall in this Section set down some Observations which I have made of other colours, such as Metalline powders tinging or colour'd bodies and several kinds of tinctures or ting'd liquors, all which, together with those I treated of in the former Observation will, I suppose, comprise the several subjects in which colour is observ'd to be inherent, and the several manners by which it inheres, or is apparent in them. And here I shall endeavour to shew by what composition all kind of compound colours are made, and how there is no colour in the world but may be made from the various degrees of these two colours, together with the intermixtures of Black and White.

And this being so, as I shall anon shew, it seems an evident argument to me, that all colours whatsoever, whether in fluid or solid, whether in very transparent or seemingly opacous, have the same efficient cause, to wit, some kind of refraction whereby the Rays that proceed from such bodies, have their pulse obliquated or confus'd in the manner I explicated in the former Section; that is, a Red is caus'd by a duplicated or confus'd pulse, whose strongest pulse precedes, and a weaker follows: and a Blue is caus'd by a confus'd pulse, where the weaker pulse precedes, and the stronger follows. And according as these are, more or less, or variously mixt and compounded, so are the sensations, and consequently the phantasms of colours diversified.

To proceed therefore; I suppose, that all transparent colour'd bodies, whether fluid or solid, do consist at least of two parts, or two kinds of substances, the one of a substance of a somewhat differing refraction from the other. That one of these substances which may be call'd the tinging substance, does consist of distinct parts, or particles of a determinate bigness which are disseminated, or dispers'd all over the other: That these particles, if the body be equally and uniformly colour'd, are evenly rang'd and dispers'd over the other contiguous body; That where the body is deepest ting'd, there these particles are rang'd thickest, and where 'tis but faintly ting'd, they are rang'd much thinner, but uniformly. That by the mixture of another body that unites with either of these, which has a differing refraction from either of the other, quite differing effects will be produc'd, that is, the consecutions of the confus'd pulses will be much of another kind, and consequently produce other sensations and phantasms of colours, and from a Red may turn to a Blue, or from a Blue to a Red, &c.

Now, that this may be the better understood, I shall endeavour to explain my meaning a little more sensible by a Scheme: Suppose we therefore in the seventh Figure of the sixth Scheme, that ABCD represents a Vessel holding a ting'd liquor, let IIIII, &c. be the clear liquor, and let the tinging body that is mixt with it be EE, &c. FF, &c. GG, &c. HH, &c. whose particles (whether round, or some other determinate Figure is little to our purpose) are first of a determinate and equal bulk. Next, they are rang'd into the form of Quincunx, or Equilaterotriangular order, which that probably they are so, and why they are so, I shall elsewhere endeavour to shew. Thirdly, they are of such a nature, as does either more easily or more difficultly transmit the Rays of light then the liquor; if more easily, a Blue is generated, and if more difficultly, a Red or Scarlet.

And first, let us suppose the tinging particles to be of a substance that does more impede the Rays of light, we shall find that the pulse or wave of light mov'd from AD to BC, will proceed on, through the containing medium by the pulses or waves KK, LL, MM, NN, OO; but because several of these Rays that go to the constitution of these pulses will be slugged or stopped by the tinging particles E, F, G, H; therefore there shall be secundary and weak pulse that shall follow the Ray, namely PP which will be the weaker: first, because it has suffer'd many refractions in the impeding body; next, for that the Rays will be a little dispers'd or confus'd by reason of the refraction in each of the particles, whether round or angular; and this will be more evident, if we a little more closely examine any one particular tinging Globule.

Suppose we therefore AB in the eighth Figure of the sixth Scheme, to represent a tinging Globule or particle which has a greater refraction than the liquor in which it is contain'd: Let CD be a part of the pulse of light which is propagated through the containing medium; this pulse will be a little stopt or impeded by the Globule, and so by that time the pulse is past to EF that part of it which has been impeded by passing through the Globule, will get but to LM, and so that pulse which has been propagated through the Globule, to wit, LM, NO, PQ, will always come behind the pulses EF, GH, IK, &c.

Next, by reason of the greater impediment in AB, and its Globular Figure, the Rays that pass through it will be dispers'd, and very much scatter'd. Whence CA and DB which before went direct and parallel, will after the refraction in AB, diverge and spread by AP, and BQ; so that as the Rays do meet with more and more of these tinging particles in their way, by so much the more will the pulse of light further lagg behind the clearer pulse, or that which has fewer refractions, and thence the deeper will the colour be, and the fainter the light that is trajected through it; for not onely many Rays are reflected from the surfaces of AB, but those Rays that get through it are very much disordered.

By this Hypothesis there is no one experiment of colour that I have yet met with, but may be, I conceive, very rationably solv'd, and perhaps, had I time to examine several particulars requisite to the demonstration of it, I might prove it more than probable, for all the experiments about the changes and mixings of colours related in the Treatise of Colours, published by the Incomparable Mr. Boyle, and multitudes of others which I have observ'd, do so easily and naturally flow from those principles, that I am very apt to think it probable, that they own their production to no other secundary cause: As to instance in two or three experiments. In the twentieth Experiment, this Noble Authour has shewn that the deep bluish purple-colour of Violets, may be turn'd into a Green, by Alcalizate Salts, and to a Red by acid; that is, a Purple consists of two colours, a deep Red, and a deep Blue; when the Blue is diluted, or altered, or destroy'd by acid Salts, the Red becomes predominant, but when the Red is diluted by Alcalizate, and the Blue heightned, there is generated a Green; for of a Red diluted, is made a Yellow, and Yellow and Blue make a Green.

Now, because the spurious pulses which cause a Red and a Blue, do the one follow the clear pulse, and the other precede it, it usually follows, that those Saline refracting bodies which do dilute the colour of the one, do deepen that of the other. And this will be made manifest by almost all kinds of Purples, and many sorts of Greens, both these colours consisting of mixt colours; for if we suppose A and A in the ninth Figure, to represent two pulses of clear light, which follow each other at a convenient distance, AA, each of which has a spurious pulse preceding it, as BB, which makes a Blue, and another following it, as CC, which makes a Red, the one caus'd by tinging particles that have a greater refraction, the other by others that have a less refracting quality then the liquor or Menstruum in which these are dissolv'd, whatsoever liquor does so alter the refraction of the one, without altering that of the other part of the ting'd liquor, must needs very much alter the colour of the liquor; for if the refraction of the dissolvent be increas'd, and the refraction of the tinging particles not altered, then will the preceding spurious pulse be shortned or stopt, and not out-run the clear pulse so much; so that BB will become EE, and the Blue be diluted, whereas the other spurious pulse which follows will be made to lagg much more, and be further behind AA than before, and CC will become ff, and so the Yellow or Red will be heightned.

A Saline liquor therefore, mixt with another ting'd liquor, may alter the colour of it several ways, either by altering the refraction of the liquor in which the colour swims: or secondly by varying the refraction of the coloured particles, by uniting more intimately either with some particular corpuscles of the tinging body, or with all of them, according as it has a congruity to some more especially, or to all alike: or thirdly, by uniting and interweaving it self with some other body that is already joyn'd with the tinging particles, with which substance it may have a congruity, though it have very little with the particles themselves: or fourthly, it may alter the colour of a ting'd liquor by dis-joyning certain particles which were before united with the tinging particles, which though they were somewhat congruous to these particles, have yet a greater congruity with the newly infus'd Saline menstruum. It may likewise alter the colour by further dissolving the tinging substance into smaller and smaller particles, and so diluting the colour; or by uniting several particles together as in precipitations, and so deepning it, and some such other ways, which many experiments and comparisons of differing trials together, might easily inform one of.

From these Principles applied, may be made out all the varieties of colours observable, either in liquors, or any other ting'd bodies, with great ease, and I hope intelligible enough, there being nothing in the notion of colour, or in the suppos'd production, but is very conceivable, and may be possible.

The greatest difficulty that I find against this Hypothesis, is, that there seem to be more distinct colours then two, that is, then Yellow and Blue. This Objection is grounded on this reason, that there are several Reds, which diluted, make not a Saffron or pale Yellow, and therefore Red, or Scarlet seems to be a third colour distinct from a deep degree of Yellow.

To which I answer, that Saffron affords us a deep Scarlet tincture, which may be diluted into as pale a Yellow as any, either by making a weak solution of the Saffron, by infusing a small parcel of it into a great quantity of liquor, as in spirit of Wine, or else by looking through a very thin quantity of the tincture, and which may be heightn'd into the loveliest Scarlet, by looking through a very thick body of this tincture, or through a thinner parcel of it, which is highly impregnated with the tinging body, by having had a greater quantity of the Saffron dissolv'd in a smaller parcel of the liquor.

Now, though there may be some particles of other tinging bodies that give a lovely Scarlet also, which though diluted never so much with liquor, or looked on through never so thin a parcel of ting'd liquor, will not yet afford a pale Yellow, but onely a kind of faint Red; yet this is no argument but that those ting'd particles may have in them the faintest degree of Yellow, though we may be unable to make them exhibit it; For that power of being diluted depending upon the divisibility of the ting'd body, if I am unable to make the tinging particles so thin as to exhibit that colour, it does not therefore follow, that the thing is impossible to be done; now, the tinging particles of some bodies are of such a nature, that unless there be found some way of comminuting them into less bulks then the liquor does dissolve them into, all the Rays that pass through them must necessarily receive a tincture so deep, as their appropriate refractions and bulks compar'd with the proprieties of the dissolving liquor must necessarily dispose them to empress, which may perhaps be a pretty deep Yellow, or pale Red.

And that this is not gratis dictum, I shall add one instance of this kind, wherein the thing is most manifest.

If you take Blue Smalt, you shall find, that to afford the deepest Blue, which caeteris paribus has the greatest particles or sands; and if you further divide, or grind those particles on a Grindstone, or porphyry stone, you may by comminuting the sands of it, dilute the Blue into as pale a one as you please, which you cannot do by laying the colour thin; for wheresoever any single particle is, it exhibits as deep a Blue as the whole mass. Now, there are other Blues, which though never so much ground, will not be diluted by grinding, because consisting of very small particles, very deeply ting'd, they cannot by grinding be actually separated into smaller particles then the operation of the fire, or some other dissolving menstruum, reduc'd them to already.

Thus all kind of Metalline colours, whether precipitated, sublim'd, calcin'd, or otherwise prepar'd, are hardly chang'd by grinding, as ultra marine is not more diluted; nor is Vermilion or Red-lead made of a more faint colour by grinding; for the smallest particles of these which I have view'd with my greatest Magnifying-Glass, if they be well enlightned, appear very deeply ting'd with their peculiar colours; nor, though I have magnified and enlightned the particles exceedingly, could I in many of them, perceive them to be transparent, or to be whole particles, but the smallest specks that I could find among well ground Vermilion and Red-lead, seem'd to be a Red mass, compounded of a multitude of less and less motes, which sticking together, compos'd a bulk, not one thousand thousandth part of the smallest visible sand or mote.

And this I find generally in most Metalline colours, that though they consist of parts so exceedingly small, yet are they very deeply ting'd, they being so ponderous, and having such a multitude of terrestrial particles throng'd into a little room; so that 'tis difficult to find any particle transparent or resembling a pretious stone, though not impossible; for I have observ'd divers such shining and resplendent colours intermixt with the particles of Cinnaber, both natural and artificial, before it hath been ground and broken or flaw'd into Vermilion: As I have also in Orpiment, Red-lead, and Bise, which makes me suppose, that those metalline colours are by grinding, not onely broken and separated actually into smaller pieces, but that they are also flaw'd and brused, whence they, for the most part, become opacous, like flaw'd Crystal or Glass, &c. But for Smalts and verditures, I have been able with a Microscope to perceive their particles very many of them transparent.

Now, that the others also may be transparent, though they do not appear so to the Microscope, may be made probable by this Experiment: that if you take ammel that is almost opacous, and grind it very well on a Porphyry, or Serpentine, the small particles will by reason of their flaws, appear perfectly opacous; and that 'tis the flaws that produce this opacousness, may be argued from this, that particles of the same Ammel much thicker if unflaw'd will appear somewhat transparent even to the eye; and from this also, that the most transparent and clear Crystal, if heated in the fire, and then suddenly quenched, so that it be all over flaw'd, will appear opacous and white.

And that the particles of Metalline colours are transparent, may be argued yet further from this, that the Crystals, or Vitriols of all Metals, are transparent, which since they consist of metalline as well as saline particles, those metalline ones must be transparent, which is yet further confirm'd from this, that they have for the most part, appropriate colours; so the vitriol of Gold is Yellow; of Copper, Blue, and sometimes Green; of Iron, green; of Tinn and Lead, a pale White; of Silver, a pale Blue, &.

And next, the Solution of all Metals into menstruums are much the same with the Vitriols, or Crystals. It seems therefore very probable, that those colours which are made by the precipitation of those particles out of the menstruums by transparent precipitating liquors should be transparent also. Thus Gold precipitates with oyl of Tartar, or spirit of Urine into a brown Yellow, Copper with spirit of Urine into a Mucous blue, which retains its transparency. A solution of sublimate (as the same Illustrious Authour I lately mention'd shews in his 40. Experiment) precipitates with oyl of Tartar per deliquium, into an Orange colour'd precipitate; nor is it less probable, that the calcination of those Vitriols by the fire, should have their particles transparent: Thus Saccarum Saturni, or the Vitriol of Lead by calcination becomes a deep Orange-colour'd minium, which is a kind of precipitation by some Salt which proceeds from the fire; common Vitriol calcin'd, yields a deep Brown Red, etc.

A third Argument, that the particles of Metals are transparent, is, that being calcin'd, and melted with Glass, they tinge the Glass with transparent colours. Thus the Calx of Silver tinges the Glass on which it is anneal'd with a lovely Yellow, or Gold colour, &c.

And that the parts of Metals are transparent, may be farther argued from the transparency of Leaf-gold, which held against the light, both to the naked eye, and the Microscope, exhibits a deep Green. And though I have never seen the other Metals laminated so thin, that I was able to perceive them transparent, yet, for Copper and Brass, if we had the same conveniency for laminating them, as we have for Gold, we might, perhaps, through such plates or leaves, find very differing degrees of Blue, or Green; for it seems very probable, that those Rays that rebound from them ting'd, with a deep Yellow, or pale Red, as from Copper, or with a pale Yellow, as from Brass, have past through them; for I cannot conceive how by reflection alone those Rays can receive a tincture, taking any Hypothesis extant.

So that we see there may a sufficient reason be drawn from these instances, why those colours which we are unable to dilute to the palest Yellow, or Blue, or Green, are not therefore to be concluded not to be a deeper degree of them; for supposing we had a great company of small Globular essence Bottles, or round Glass bubbles, about the bigness of a Walnut, fill'd each of them with a very deep mixture of Saffron, and that every one of them did appear of a deep Scarlet colour, and all of them together did exhibit at a distance, a deep dy'd Scarlet body. It does not follow, because after we have come nearer to this congeries, or mass, and divided it into its parts, and examining each of its parts severally or apart, we find them to have much the same colour with the whole mats; it does not, I say, therefore follow, that if we could break those Globules smaller, or any other ways come to see a smaller or thinner parcel of the ting'd liquor that fill'd those bubbles, that that ting'd liquor must always appear Red, or of a Scarlet hue, since if Experiment be made, the quite contrary will ensue; for it is capable of being diluted into the palest Yellow.

Now, that I might avoid all the Objections of this kind, by exhibiting an Experiment that might by ocular proof convince those whom other reasons would not prevail with, I provided me a Prismatical Glass, made hollow, just in the form of a Wedge, such as is represented in the tenth Figure of the sixth Scheme. The two parallelogram sides ABCD, ABEF, which met at a point, were made of the clearest Looking-glass plates well ground and polish'd that I could get; these were joyn'd with hard cement to the triangular sides, BCE, ADF, which were of Wood; the Parallelogram base BCEF, likewise was of Wood joyn'd on to the rest with hard cement, and the whole Prismatical Box was exactly stopt every where, but onely a little hole near the base was left, whereby the Vessel could be fill'd with any liquor, or emptied again at pleasure.

One of these Boxes (for I had two of them) I fill'd with a pretty deep tincture of Aloes, drawn onely with fair Water, and then stopt the hole with a piece of Wax, then, by holding this Wedge against the Light, and looking through it, it was obvious enough to see the tincture of the liquor near the edge of the Wedge where it was but very thin, to be a pale but well colour'd Yellow, and further and further from the edge, as the liquor grew thicker and thicker, this tincture appear'd deeper and deeper, so that near the blunt end, which was seven Inches from the edge and three Inches and an half thick; it was of a deep and well colour'd Red. Now, the clearer and purer this tincture be, the more lovely will the deep Scarlet be, and the fouler the tincture be, the more dirty will the Red appear; so that some dirty tinctures have afforded their deepest Red much of the colour of burnt Oker or Spanish brown; others as lovely a colour as Vermilion, and some much brighter; but several others, according as the tinctures were worse or more foul, exhibited various kinds of Reds, of very differing degrees.

The other of these Wedges, I fill'd with a most lovely tincture of Copper, drawn from the filings of it, with spirit of Urine, and this Wedge held as the former against the Light, afforded all manner of Blues, from the faintest to the deepest, so that I was in good hope by these two, to have produc'd all the varieties of colours imaginable; for I thought by this means to have been able by placing the two Parallelogram sides together, and the edges contrary ways, to have so mov'd them to and fro one by another, as by looking through them in several places, and through several thicknesses, I should have compounded, and consequently have seen all those colours, which by other like compositions of colours would have ensued.

But insteed of meeting with what I look'd for, I met with somewhat more admirable; and that was, that I found my self utterly unable to see through them when placed both together, though they were transparent enough when asunder; and though I could see through twice the thickness, when both of them were fill'd with the same colour'd liquors, whether both with the Yellow, or both with the Blue, yet when one was fill'd with the Yellow, the other with the Blue, and both looked through, they both appear'd dark, onely when the parts near the tops were look'd through, they exhibited Greens, and those of very great variety, as I expected, but the Purples and other colours, I could not by any means make, whether I endeavour'd to look through them both against the Sun, or whether I plac'd them against the hole of a darkned room.

But notwithstanding this mis-ghessing, I proceeded on with my trial in a dark room, and having two holes near one another, I was able, by placing my Wedges against them, to mix the ting'd Rays that past through them, and fell on a sheet of white Paper held at a convenient distance from them as I pleas'd; so that I could make the Paper appear of what colour I would, by varying the thicknesses of the Wedges, and consequently the tincture of the Rays that past through the two holes, and sometimes also by varying the Paper, that is, insteed of a white Paper, holding a gray, or a black piece of Paper.

Whence I experimentally found what I had before imagin'd, that all the varieties of colours imaginable are produc'd from several degrees of these two colours, namely, Yellow and Blue, or the mixture of them with light and darkness, that is, white and black. And all those almost infinite varieties which Limners and Painters are able to make by compounding those several colours they lay on their Shels or Palads, are nothing else, but some compositum, made up of some one or more, or all of these four.

Now, whereas it may here again be objected, that neither can the Reds be made out of the Yellows, added together, or laid on in greater or less quantity, nor can the Yellows be made out of the Reds though laid never so thin; and as for the addition of White or Black, they do nothing but either whiten or darken the colours to which they are added, and not at all make them of any other kind of colour: as for instance, Vermilion, by being temper'd with White Lead, does not at all grow more Yellow, but onely there is made a whiter kind of Red. Nor does Yellow Oker, though laid never so thick, produce the colour of Vermilion, nor though it be temper'd with Black, does it at all make a Red; nay, though it be temper'd with White, it will not afford a fainter kind of Yellow, such as masticut, but onely a whiten'd Yellow; nor will the Blues be diluted or deepned after the manner I speak of, as Indico will never afford so fine a Blue as Ultramarine or Bise; nor will it, temper'd with Vermilion, ever afford a Green, though each of them be never so much temper'd with white.

To which I answer, that there is a great difference between diluting a colour and whitening of it; for diluting a colour, is to make the colour'd parts more thin, so that the ting'd light, which is made by trajecting those ting'd bodies, does not receive so deep a tincture; but whitening a colour is onely an intermixing of many clear reflections of light among the same ting'd parts; deepning also, and darkning or blacking a colour, are very different; for deepning a colour, is to make the light pass through a greater quantity of the same tinging body; and darkning or blacking a colour, is onely interposing a multitude of dark or black spots among the same ting'd parts, or placing the colour in a more faint light.

First therefore, as to the former of these operations, that is, diluting and deepning, most of the colours us'd by the Limners and Painters are incapable of, to wit, Vermilion and Red-lead, and Oker, because the ting'd parts are so exceeding small, that the most curious Grindstones we have, are not able to separate them into parts actually divided so small as the ting'd particles are; for looking on the most curiously ground Vermilion, and Oker, and Red-lead, I could perceive that even those small corpuscles of the bodies they left were compounded of many pieces, that is, they seem'd to be small pieces compounded of a multitude of lesser ting'd parts: each piece seeming almost like a piece of Red Glass, or ting'd Crystal all flaw'd; so that unless the Grindstone could actually divide them into smaller pieces then those flaw'd particles were, which compounded that ting'd mote I could see with my Microscope, it would be impossible to dilute the colour by grinding, which, because the finest we have will not reach to do in Vermilion or Oker, therefore they cannot at all, or very hardly be diluted.

Other colours indeed, whose ting'd particles are such as may be made smaller, by grinding their colour, may be diluted. Thus several of the Blues may be diluted, as Smalt and Bise; and Masticut, which is Yellow, may be made more faint: And even Vermilion it self may, by too much grinding, be brought to the colour of Red-lead, which is but an Orange colour, which is confest by all to be very much upon the Yellow. Now, though perhaps somewhat of this diluting of Vermilion by overmuch grinding may be attributed to the Grindstone, or muller, for that some of their parts may be worn off and mixt with the colour, yet there seems not very much, for I have done it on a Serpentine-stone with a muller made of a Pebble, and yet observ'd the same effect follow.

And secondly, as to the other of these operations on colours, that is, the deepning of them, Limners and Painters colours are for the most part also uncapable. For they being for the most part opacous; and that opacousness, as I said before, proceeding from the particles, being very much flaw'd, unless we were able to joyn and re-unite those flaw'd particles again into one piece, we shall not be able to deepen the colour, which since we are unable to do with most of the colours which are by Painters accounted opacous, we are therefore unable to deepen them by adding more of the same kind.

But because all those opacous colours have two kinds of beams or Rays reflected from them, that is, Rays unting'd, which are onely reflected from the outward surface, without at all penetrating of the body, and ting'd Rays which are reflected from the inward surfaces or flaws after they have suffer'd a two-fold refraction; and because that transparent liquors mixt with such corpuscles, do, for the most part, take off the former kind of reflection; therefore these colours mixt with Water or Oyl, appear much deeper than when dry, for most part of that white reflection from the outward surface is remov'd. Nay, some of these colours are very much deepned by the mixture with some transparent liquor, and that because they may perhaps get between those two flaws, and so consequently joyn two or more of those flaw'd pieces together; but this happens but in a very few.

Now, to shew that all this is not gratis dictum, I shall set down some Experiments which do manifest these things to be probable and likely, which I have here deliver'd.

For, first, if you take any ting'd liquor whatsoever, especially if it be pretty deeply ting'd, and by any means work it into a froth, the congeries of that froth shall seem an opacous body, and appear of the same colour, but much whiter than that of the liquor out of which it is made. For the abundance of reflections of the Rays against those surfaces of the bubbles of which the froth consists, does so often rebound the Rays backwards, that little or no light can pass through, and consequently the froth appears opacous.

Again, if to any of these ting'd liquors that will endure the boiling there be added a small quantity of fine flower (the parts of which through the Microscope are plainly enough to be perceiv'd to consist of transparent corpuscles) and suffer'd to boyl till it thicken the liquor, the mass of the liquor will appear opacous, and ting'd with the same colour, but very much whiten'd.

Thus, if you take a piece of transparent Glass that is well colour'd, and by heating it, and then quenching it in Water, you flaw it all over, it will become opacous, and will exhibit the same colour with which the piece is ting'd, but fainter and whiter.

Or, if you take a Pipe of this transparent Glass, and in the flame of a Lamp melt it, and then blow it into very thin bubbles, then break those bubbles, and collect a good parcel of those laminae together in a Paper, you shall find that a small thickness of those Plates will constitute an opacous body, and that you may see through the mass of Glass before it be thus laminated, above four times the thickness: And besides, they will now afford a colour by reflection as other opacous (as they are call'd) colours will, but much fainter and whiter than that of the Lump or Pipe out of which they were made.

Thus also, if you take Putty, and melt it with any transparent colour'd Glass, it will make it become an opacous colour'd lump, and to yield a paler and whiter colour than the lump by reflection.

The same thing may be done by a preparation of Antimony, as has been shewn by the Learned Physician, Dr. C.M. in his Excellent Observations and Notes on Nery's Art of Glass; and by this means all transparent colours become opacous, or ammels. And though by being ground they lose very much of their colour, growing much whiter by reason of the multitude of single reflections from their outward surface, as I shew'd afore, yet the fire that in the nealing or melting re-unites them, and so renews those spurious reflections, removes also those whitenings of the colour that proceed from them.

As for the other colours which Painters use, which are transparent, and us'd to varnish over all other paintings, 'tis well enough known that the laying on of them thinner or thicker, does very much dilute or deepen their colour.

Painters Colours therefore consisting most of them of solid particles, so small that they cannot be either re-united into thicker particles by any Art yet known, and consequently cannot be deepned; or divided into particles so small as the flaw'd particles that exhibit that colour, much less into smaller, and consequently cannot be diluted; It is necessary that they which are to imitate all kinds of colours, should have as many degrees of each colour as can be procur'd.

And to this purpose, both Limners and Painters have a very great variety both of Yellows and Blues, besides several other colour'd bodies that exhibit very compounded colours, such as Greens and Purples; and others that are compounded of several degrees of Yellow, or several degrees of Blue, sometimes unmixt, and sometimes compounded with several other colour'd bodies.

The Yellows, from the palest to the deepest Red or Scarlet, which has no intermixture of Blue, are pale and deep Masticut, Orpament, English Oker, brown Oker, Red Lead, and Vermilion, burnt English Oker, and burnt brown Oker, which last have a mixture of dark or dirty parts with them, &c.

Their Blues are several kinds of Smalts, and Verditures, and Bise, and Ultramarine, and Indico, which last has many dirty or dark parts intermixt with it.

Their compounded colour'd bodies, as Pink, and Verdigrese, which are Greens, the one a Popingay, the other a Sea-green; then Lac, which is a very lovely Purple.

To which may be added their Black and White, which they also usually call Colours, of each of which they have several kinds, such as Bone Black, made of Ivory burnt in a close Vessel, and Blue Black, made of the small coal of Willow, or some other Wood; and Cullens earth, which is a kind of brown Black, &c. Their usual Whites are either artificial or natural White Lead, the last of which is the best they yet have, and with the mixing and tempering these colours together, are they able to make an imitation of any colour whatsoever: Their Reds or deep Yellows, they can dilute by mixing pale Yellows with them, and deepen their pale by mixing deeper with them; for it is not with Opacous colours as it is with transparent, where by adding more Yellow to yellow, it is deepned, but in opacous diluted. They can whiten any colour by mixing White with it, and darken any colour by mixing Black, or some dark and dirty colour. And in a word, most of the colours, or colour'd bodies they use in Limning and Painting, are such, as though mixt with any other of their colours, they preserve their own hue, and by being in such very smal parts dispers'd through the other colour'd bodies, they both, or altogether represent to the eye a compositum of all; the eye being unable, by reason of their smalness, to distinguish the peculiarly colour'd particles, but receives them as one intire compositum: whereas in many of these, the Microscope very easily distinguishes each of the compounding colours distinct, and exhibiting its own colour.

Thus have I by gently mixing Vermilion and Bise dry, produc'd a very fine Purple, or mixt colour, but looking on it with the Microscope, I could easily distinguish both the Red and the Blue particles, which did not at all produce the Phantasm of Purple.

To summ up all therefore in a word, I have not yet found any solid colour'd body, that I have yet examin'd, perfectly opacous; but those that are least transparent are Metalline and Mineral bodies, whose particles generally, seeming either to be very small, or very much flaw'd, appear for the most part opacous, though there are very few of them that I have look'd on with a Microscope, that have not very plainly or circumstantially manifested themselves transparent.

And indeed, there seem to be so few bodies in the world that are in minimis opacous, that I think one may make it a rational Query, Whether there be any body absolutely thus opacous? For I doubt not at all (and I have taken notice of very many circumstances that make me of this mind) that could we very much improve the Microscope, we might be able to see all those bodies very plainly transparent, which we now are fain onely to ghess at by circumstances. Nay, the Object Glasses we yet make use of are such, that they make many transparent bodies to the eye, seem opacous through them, which if we widen the Aperture a little, and cast more light on the objects, and not charge the Glasses so deep, will again disclose their transparency.

Now, as for all kinds of colours that are dissolvable in Water, or other liquors, there is nothing so manifest, as that all those ting'd liquors are transparent; and many of them are capable of being diluted and compounded or mixt with other colours, and divers of them are capable of being very much chang'd and heightned, and fixt with several kinds of Saline menstruums. Others of them upon compounding, destroy or vitiate each others colours, and precipitate, or otherwise very much alter each others tincture. In the true ordering and diluting, and deepning, and mixing, and fixing of each of which, consists one of the greatest mysteries of the Dyers; of which particulars, because our Microscope affords us very little information, I shall add nothing more at present; but onely that with a very few tinctures order'd and mixt after certain ways, too long to be here set down, I have been able to make an appearance of all the various colours imaginable, without at all using the help of Salts, or Saline menstruums to vary them.

As for the mutation of Colours by Saline menstruums, they have already been so fully and excellently handled by the lately mention'd Incomparable Authour, that I can add nothing, but that of a multitude of trials that I made, I have found them exactly to agree with his Rules and Theories; and though there may be infinite instances, yet may they be reduc'd under a few Heads, and compris'd within a very few Rules. And generally I find, that Saline menstruums are most operative upon those colours that are Purple, or have some degree of Purple in them, and upon the other colours much less. The spurious pulses that compose which, being (as I formerly noted) so very neer the middle between the true ones, that a small variation throws them both to one side, or both to the other, and so consequently must make a vast mutation in the formerly appearing Colour.

* * * * *

Observ. XI. Of Figures observ'd in small Sand.

Sand generally seems to be nothing else but exceeding small Pebbles, or at least some very small parcels of a bigger stone; the whiter kind seems through the Microscope to consist of small transparent pieces of some pellucid body, each of them looking much like a piece of Alum, or Salt Gem; and this kind of Sand is angled for the most part irregularly, without any certain shape, and the granules of it are for the most part flaw'd, through amongst many of them it is not difficult to find some that are perfectly pellucid, like a piece of clear Crystal, and divers likewise most curiously shap'd, much after the manner of the bigger Stiriae of Crystal, or like the small Diamants I observ'd in certain Flints, of which I shall by and by relate; which last particular seems to argue, that this kind of Sand is not made by the comminution of greater transparent Crystaline bodies, but by the concretion or coagulation of Water, or some other fluid body.

There are other kinds of courser Sands, which are browner, and have their particles much bigger; these, view'd with a Microscope, seem much courser and more opacous substances, and most of them are of some irregularly rounded Figures; and though they seem not so opacous as to the naked eye, yet they seem very foul and cloudy, but neither do these want curiously transparent, no more than they do regularly figur'd and well colour'd particles, as I have often found.

There are multitudes of other kinds of Sands, which in many particulars, plainly enough discoverable by the Microscope, differ both from these last mention'd kinds of Sands, and from one another: there seeming to be as great variety of Sands, as there is of Stones. And as amongst Stones some are call'd precious from their excellency, so also are there Sands which deserve the same Epithite for their beauty; for viewing a small parcel of East-India Sand (which was given me by my highly honoured friend, Mr. Daniel Colwall) and, since that, another parcel, much of the same kind, I found several of them, both very transparent like precious Stones, and regularly figur'd like Crystal, Cornish Diamants, some Rubies, &c. and also ting'd with very lively and deep colours, like Rubys, Saphyrs, Emeralds, &c. These kinds of granuls I have often found also in English Sand. And 'tis easie to make such a counterfeit Sand with deeply ting'd Glass, Enamels and Painters colours.

It were endless to describe the multitudes of Figures I have met with in these kind of minute bodies, such as Spherical, Oval, Pyramidal, Conical, Prismatical, of each of which kinds I have taken notice.

But amongst many others, I met with none more observable than this pretty Shell (described in the Figure X. of the fifth Scheme) which, though as it was light on by chance, deserv'd to have been omitted (I being unable to direct any one to find the like) yet for its rarity was it not inconsiderable, especially upon the account of the information it may afford us. For by it we have a very good instance of the curiosity of Nature in another kind of Animals which are remov'd, by reason of their minuteness, beyond the reach of our eyes, so that as there are several sorts of Insects, as Mites, and others, so small as not yet to have had any names; (some of which I shall afterwards describe) and small Fishes, as Leeches in Vineger; and smal vegetables, as Moss, and Rose-Leave-plants; and small Mushroms, as mould: so are there, it seems, small Shel-fish likewise, Nature shewing her curiosity in every Tribe of Animals, Vegetables, and Minerals.

I was trying several small and single Magnifying Glasses, and casually viewing a parcel of white Sand, when I perceiv'd one of the grains exactly shap'd and wreath'd like a Shell, but endeavouring to distinguish it with my naked eye, it was so very small, that I was fain again to make use of the Glass to find it; then, whilest I thus look'd on it, with a Pin I separated all the rest of the granules of Sand, and found it afterwards to appear to the naked eye an exceeding small white spot, no bigger than the point of a Pin. Afterwards I view'd it every way with a better Microscope and found it on both sides, and edge-ways, to resemble the Shell of a small Water-Snail with a flat spiral Shell: it had twelve wreathings, a, b, c, d, e, &c. all very proportionably growing one less than another toward the middle or center of the Shell, where there was a very small round white spot. I could not certainly discover whether the Shell were hollow or not, but it seem'd fill'd with somewhat, and 'tis probable that it might be petrify'd as other larger Shels often are, such as are mention'd in the seventeenth Observation.

* * * * *

Observ. XII. Of Gravel in Urine.

I Have often observ'd the Sand or Gravel of Urine, which seems to be a tartareous substance, generated out of a saline and a terrestrial substance crystalliz'd together, in the form of Tartar, sometimes sticking to the sides of the Urinal, but for the most part sinking to the bottom, and there lying in the form of coorse common Sand; these, through the Microscope, appear to be a company of small bodies, partly transparent and partly opacous, some White, some Yellow, some Red, others of more brown and duskie colours.

The Figure of them is for the most part flat, in the manner of Slats or such like plated Stones, that is, each of them seem to be made up of several other thinner Plates, much like Muscovie Glass, or Englsh Sparr to the last of which, the white plated Gravel seems most likely; for they seem not onely plated like that, but their sides shap'd also into Rhombs, Rhomboeids, and sometimes into Rectangles and Squares. Their bigness and Figure may be seen in the second Figure of the seventh Plate, which represents about a dozen of them lying upon a plate ABCD, some of which, as a, b, c, d seem'd more regular than the rest, and e, which was a small one, sticking on the top of another, was a perfet Rhomboeid on the top, and had four Rectangular sides.

The line E which was the the measure of the Microscope, is 1/32 part of an English Inch, so that the greatest bredth of any of them, exceeded not 1/128 part of an Inch.

Putting these into several liquors, I found oyl of Vitriol, Spirit of Urine, and several other Saline menstruums to dissolve them; and the first of these in less than a minute without Ebullition, Water, and several other liquors, had no sudden operation upon them. This I mention, because those liquors that dissolve them, first make them very white, not vitiating, but rather rectifying their Figure, and thereby make them afford a very pretty object for the Microscope.

How great an advantage it would be to such as are troubled with the Stone, to find some menstruum might dissolve them without hurting the Bladder, is easily imagin'd, since some injections made of such bodies might likewise dissolve the stone, which seems much of the same nature.

It may therefore, perhaps, be worthy some Physicians enquiry, whether there may not be something mixt with the Urine in which the Gravel or Stone lies, which may again make it dissolve it, the first of which seems by it's regular Figures to have been sometimes Crystalliz'd out of it. For whether this Crystallization be made in the manner as Alum, Peter, &c. are crystallized out of a cooling liquor, in which, by boyling they have been dissolv'd; or whether it be made in the manner of Tartarum Vitriolatum, that is, by the Coalition of an acid and a Sulphureous substance, it seems not impossible, but that the liquor it lies in, may be again made a dissolvent of it. But leaving these inquiries to Physicians or Chymists, to whom it does more properly belong, I shall proceed.

* * * * *

Observ. XIII. Of the small Diamants, or Sparks in Flints.

Chancing to break a Flint stone in pieces, I found within it a certain cavity all crusted over with a very pretty candied substance, some of the parts of which, upon changing the posture of the Stone, in respect of the Incident light, exhibited a number of small, but very vivid reflections; and having made use of my Microscope, I could perceive the whole surface of that cavity to be all beset with a multitude of little Crystaline or Adamantine bodies, so curiously shap'd, that it afforded a not unpleasing object.

Having considered those vivid repercussions of light, I found them to be made partly from the plain external surface of these regularly figured bodies (which afforded the vivid reflexions) and partly to be made from within the somewhat pellucid body, that is, from some surface of the body, opposite to that superficies of it which was next the eye.

And because these bodies were so small, that I could not well come to make Experiments and Examinations of them, I provided me several small stiriae of Crystals or Diamants, found in great quantities in Cornwall and are therefore commonly called Cornish Diamants: these being very pellucid, and growing in a hollow cavity of a Rock (as I have been several times informed by those that have observ'd them) much after the same manner as these do in the Flint, and having besides their outward surface very regularly shap'd, retaining very near the same Figures with some of those I observ'd in the other, became a convenient help to me for the Examination of the proprieties of those kinds of bodies.

And first for the Reflections, in these I found it very observable, That the brightest reflections of light proceeded from within the pellucid body; that is, that the Rays admitted through the pellucid substance in their getting out on the opposite side, were by the contiguous and strong reflecting surface of the Air very vividly reflected, so that more Rays were reflected to the eye by this surface, though the Ray in entring and getting out of the Crystal had suffer'd a double refraction, than there were from the outward surface of the Glass where the Ray had suffer'd no reflection at all.

And that this was the surface of the Air that gave so vivid a re-percussion I try'd by this means I sunk half of a stiria in Water, so that only Water was contiguous to the under surface, and then the internal reflection was so exceedingly faint, that it was scarce discernable. Again, I try'd to alter this vivid reflection by keeping off the Air, with a body not fluid, and that was by rubbing and holding my finger very hard against the under surface, so as in many places the pulp of my finger did touch the Glass, without any interjacent air between, then observing the reflection, I found, that wheresoever my finger or skin toucht the surface, from that part there was no reflection, but in the little furrows or creases of my skin, where there remain'd little small lines of air, from them was return'd a very vivid reflection as before. I try'd further, by making the surface of very pure Quicksilver to be contiguous to the under surface of this pellucid body, and then the reflection from that was so exceedingly more vivid than from the air, as the reflection from air was than the reflection from the Water; from all which trials I plainly saw, that the strong reflecting air was the cause of this Phaenomenon.

And this agrees very well with the Hypothesis of light and Pellucid bodies which I have mention'd in the description of Muscovy-glass; for we there suppose Glass to be a medium, which does less resist the pulse of light, and consequently, that most of the Rays incident on it enter into it, and are refracted towards the perpendicular; whereas the air I suppose to be a body that does more resist it, and consequently more are re-percuss'd then do enter it: the same kind of trials have I made, with Crystalline Glass, with drops of fluid bodies, and several other ways, which do all seem to agree very exactly with this Theory. So that from this Principle well establish'd, we may deduce severall Corollaries not unworthy observation.

And the first is; that it plainly appears by this, that the production of the Rainbow is as much to be ascribed to the reflection of the concave surface of the air, as to the refraction of the Globular drops: this will be evidently manifest by these Experiments, if you foliate that part of a Glass-ball that is to reflect an Iris, as in the Cartesian Experiment, above mention'd, the reflections will be abundantly more strong, and the colours more vivid: and if that part of the surface be touch'd with Water, scarce affords any sensible colour at all.

Next we learn, that the great reason why pellucid bodies beaten small are white, is from the multitude of reflections, not from the particles of the body, but from the contiguous surface of the air. And this is evidently manifested, by filling the Interstitia of those powder'd bodies with Water, whereby their whiteness presently disappears. From the same reason proceeds the whiteness of many kinds of Sands, which in the Microscope appear to be made up of a multitude of little pellucid bodies, whose brightest reflections may by the Microscope be plainly perceiv'd to come from their internal surfaces; and much of the whiteness of it may be destroy'd by the affusion of fair Water to be contiguous to those surfaces.

The whiteness also of froth, is for the most part to be ascribed to the reflection of the light from the surface of the air within the Bubbles, and very little to the reflection from the surface of the Water it self: for this last reflection does not return a quarter so many Rays, as that which is made from the surface of the air, as I have certainly found by a multitude of Observations and Experiments.

The whiteness of Linnen, Paper, Silk, &c. proceeds much from the same reason, as the Microscope will easily discover; for the Paper is made up of an abundance of pellucid bodies, which afford a very plentifull reflection from within, that is, from the concave surface of the air contiguous to its component particles; wherefore by the affusion of Water, Oyl, Tallow, Turpentine, &c. all those reflections are made more faint, and the beams of light are suffer'd to traject & run through the Paper more freely.

Hence further we may learn the reason of the whiteness of many bodies, and by what means they maybe in part made pellucid: As white Marble for instance, for this body is composed of a pellucid body exceedingly flaw'd, that is, there are abundance of thin, and very fine cracks or chinks amongst the multitude of particles of the body, that contain in them small parcels of air, which do so re-percuss and drive back the penetrating beams, that they cannot enter very deep within that body; which the Microscope does plainly inform us to be made up of a Congeries of pellucid particles. And I further found it somewhat more evidently by some attempts I made towards the making transparent Marble, for by heating the Stone a little, and baking it in Oyl, Turpentine, Oyl of Turpentine, &c., I found that I was able to see much deeper into the body of Marble then before; and one trial, which was not with an unctuous substance, succeeded better than the rest, of which, when I have a better opportunity, I shall make further trial.

This also gives us a probable reason of the so much admired Phaenomena, of the Oculus Mundi, an Oval stone, which commonly looks like white Alabaster, but being laid a certain time in Water, it grows pellucid, and transparent, and being suffer'd to lie again dry, it by degrees loses that transparency, and becomes white as before. For the Stone being of a hollow spongie nature, has in the first and last of these appearances, all those pores fill'd with the obtunding and reflecting air; whereas in the second, all those pores are fill'd with a medium that has much the same refraction with the particles of the Stone, and therefore those two being contiguous, make, as 'twere, one continued medium, of which more is said in the 15. Observation.

There are a multitude of other Phaenomena, that are produc'd from this same Principle, which as it has not been taken notice of by any yet that I know, so I think, upon more diligent observation, will it not be found the least considerable. But I have here onely time to hint Hypotheses, and not to prosecute them so fully as I could wish; many of them having a vast extent in the production of a multitude of Phaenomena, which have been by others, either not attempted to be explain'd, or else attributed to some other cause than what I have assign'd, and perhaps than the right; and therefore I shall leave this to the prosecution of such as have more leisure: onely before I leave it, I must not pretermit to hint, that by this Principle, multitudes of the Phaenomena of the air, as about Mists, Clouds, Meteors, Haloes, &c. are most plainly and (perhaps) truly explicable; multitudes also of the Phaenomena in colour'd bodies, as liquors, &c. are deducible from it.

And from this I shall proceed to a second considerable Phaenomenon which these Diamants exhibit, and that is the regularity of their Figure, which is a propriety not less general than the former, It comprising within its extent, all kinds of Metals, all kinds of Minerals, most Precious stones, all kinds of Salts, multitudes of Earths, and almost all kinds of fluid bodies. And this is another propiety, which, though a little superficially taken notice of by some, has not, that I know, been so much as attempted to be explicated by any.

This propriety of bodies, as I think it the most worthy, and next in order to be consider'd after the contemplation of the Globular Figure, so have I long had a desire as wel as a determination to have prosecuted it if I had had an opportunity, having long since propos'd to my self the method of my enquiry therein, it containing all the allurements that I think any enquiry is capable of: For, first I take it to proceed from the most simple principle that any kind of form can come from, next the Globular, which was therefore the first I set upon, and what I have therein perform'd, I leave the Judicious Reader to determine. For as that form proceeded from a propiety of fluid bodies, which I have call'd Congruity, or Incongruity; so I think, had I time and opportunity, I could make probable, that all these regular Figures that are so conspicuously various and curious, and do so adorn and beautifie such multitudes of bodies, as I have above hinted, arise onely from three or four several positions or postures of Globular particles, and those the most plain, obvious, and necessary conjunctions of such figur'd particles that are possible, so that supposing such and such plain and obvious causes concurring the coagulating particles must necessarily compose a body of such a determinate regular Figure, and no other, and this with as much necessity and obviousness as a fluid body encompast with a Heterogeneous fluid must be protruded into a Spherule or Globe. And this I have ad oculum demonstrated with a company of bullets, and some few other very simple bodies; so that there was not any regular Figure, which I have hitherto met withall, of any of those bodies that I have above named, that I could not with the composition of bullets or globules, and one or two other bodies, imitate, even almost by shaking them together. And thus for instance may we find that the Globular bullets will of themselves, if put on an inclining plain, so that they may run together, naturally run into a triangular order, composing all the variety of figures that can be imagin'd to be made out of aequilateral triangles; and such will you find, upon trial, all the Surfaces of Alum to be compos'd of: For three bullets lying on a plain, as close to one another as they can compose an aequilatero-triangular form, as in A in the 7. Scheme. If a fourth be joyn'd to them on either side as closely as it can, they four compose the most regular Rhombus consisting of two aequilateral triangles, as B. If a fifth be joyn'd to them on either side in as close a position as it can, which is the propriety of the Texture, it makes a Trapezium, or four-sided Figure, two of whole angles are 120. and two 60. degrees, as C. If a sixth be added, as before, either it makes an aequilateral triangle, as D, or a Rhomboeid, as E, or an Hex-angular Figure, as F, which is compos'd of two primary Rhombes. If a seventh be added, it makes either an aequilatero-hexagonal Figure, as G, or some kind of six-sided Figure, as H, or I. And though there be never so many placed together, they may be rang'd into some of these lately mentioned Figures, all the angles of which will be either 60. degrees, or 120. as the figure K. which is an aequiangular hexagonal Figure is compounded of 12. Globules, or may be of 25, or 27, or 36, or 42, &c. and by these kinds of texture, or position of globular bodies, may you find out all the variety of regular shapes, into which the smooth surfaces of Alum are form'd, as upon examination any one may easily find; nor does it hold only in superficies, but in solidity also, for it's obvious that a fourth Globule laid upon the third in this texture, composes a regular Tetrahedron, which is a very usual Figure of the Crystals of Alum. And (to hasten) there is no one Figure into which Alum is observ'd to be crystallized, but may by this texture of Globules be imitated, and by no other.

I could instance also in the Figure of Sea-salt, and Sal-gem, that it is compos'd of a texture of Globules, placed in a cubical form, as L, and that all the Figures of those Salts may be imitated by this texture of Globules and by no other whatsoever. And that the forms of Vitriol and of Salt-Peter, as also of Crystal, Hore-frost, &c. are compounded of these two textures, but modulated by certain proprieties: But I have not here time to insist upon, as I have not neither to shew by what means Globules come to be thus context, and what those Globules are, and many other particulars requisite to a full and intelligible explication of this propriety of bodies. Nor have I hitherto found indeed an opportunity of prosecuting the inquiry so farr as I design'd; nor do I know when I may, it requiring abundance of time, and a great deal of assistance to go through with what I design'd; the model of which was this:

First, to get as exact and full a collection as I could, of all the differing kinds of Geometrical figur'd bodies, some three or four several bodies of each kind.

Secondly, with them to get as exact a History as possibly I could learn of their places of Generation or finding, and to enquire after as many circumstances that tended to the Illustrating of this Enquiry, as possibly I could observe.

Thirdly, to make as many trials as upon experience I could find requisite, in Dissolutions and Coagulations of several crystallizing Salts; for the needfull instruction and information in this Enquiry.

Fourthly, to make several trials on divers other bodies, as Metals, Minerals, and Stones, by dissolving them in several Menstruums, and crystalizing them, to see what Figures would arise from those several Compositums.

Fifthly, to make Compositions and Coagulations of several Salts together into the same mass, to observe of what Figure the product of them would be; and in all, to note as many circumstances as I should judge conducive to my Enquiry.

Sixthly, to enquire the closeness or rarity of the texture of these bodies, by examining their gravity, and their refraction, &c.

Seventhly, to enquire particularly what operations the fire has upon several kinds of Salts, what changes it causes in their Figures, Textures, or Energies.

Eighthly, to examine their manner of dissolution, or acting upon those bodies dissoluble in them; The texture of those bodies before and after the process. And this for the History.

Next for the Solution, To have examin'd by what, and how many means, such and such Figures, actions and effects could be produc'd possibly.

And lastly, from all circumstances well weigh'd, I should have endeavoured to have shewn which of them was most likely, and (if the informations by these Enquiries would have born it) to have demonstrated which of them it must be, and was.

But to proceed, As I believe it next to the Globular the most simple; so do I, in the second place, judge it not less pleasant; for that which makes an Enquiry pleasant, are, first a noble Inventum that promises to crown the successfull endeavour; and such must certainly the knowledge of the efficient and concurrent causes of all these curious Geometrical Figures be, which has made the Philosophers hitherto to conclude nature in these things to play the Geometrician, according to that saying of Plato, [Greek: Ho Theos geometrei]. Or next, a great variety of matter in the Enquiry; and here we meet with nothing less than the Mathematicks of nature, having every day a new Figure to contemplate, or a variation of the same in another body,

Which do afford us a third thing, which will yet more sweeten the Enquiry, and that is, a multitude of information; we are not so much to grope in the dark, as in most other Enquiries, where the Inventum is great; for having such a multitude of instances to compare, and such easie ways of generating, or compounding and of destroying the form, as in the Solution and Crystallization of Salts, we cannot but learn plentifull information to proceed by. And this will further appear from the universality of the Principle which Nature has made use of almost in all inanimate bodies. And therefore, as the contemplation of them all conduces to the knowledg of any one; so from a Scientifical knowledge of any one does follow the fame of all, and every one.

And fourthly, for the usefulness of this knowledge, when acquir'd; certainly none can doubt, that considers that it caries us a step forward into the Labirinth of Nature, in the right way towards the end we propose our selves in all Philosophical Enquiries. So that knowing what is the form of Inanimate or Mineral bodies, we shall be the better able to proceed in our next Enquiry after the forms of Vegetative bodies; and last of all, of Animate ones, that seeming to be the highest step of natural knowledge that the mind of man is capable of.

* * * * *

Observ. XIV. Of several kindes of frozen Figures.

I have very often in a Morning, when there has been a great hoar-frost, with an indifferently magnifying Microscope, observ'd the small Stiriae, or Crystalline beard, which then usually covers the face of most bodies that lie open to the cold air, and found them to be generally Hexangular prismatical bodies, much like the long Crystals of Salt-peter, save onely that the ends of them were differing: for whereas those of Nitre are for the most part pyramidal, being terminated either in a point or edge; these of Frost were hollow, and the cavity in some seem'd pretty deep, and this cavity was the more plainly to be seen, because usually one or other of the six parallelogram sides was wanting, or at least much shorter then the rest.

But this was onely the Figure of the Bearded hoar-frost; and as for the particles of other kinds of hoar-frosts, they seem'd for the most part irregular, or of no certain Figure. Nay, the parts of those curious branchings, or vortices, that usually in cold weather tarnish the surface of Glass, appear through the Microscope very rude and unshapen, as do most other kinds of frozen Figures, which to the naked eye seem exceeding neat and curious, such as the Figures of Snow, frozen Urine, Hail, several Figures frozen in common Water, &c. Some Observations of each of which I shall hereunto annex, because if well consider'd and examin'd, they may, perhaps, prove very instructive for the finding out of what I have endeavoured in the preceding Observation to shew, to be (next the Globular Figure which is caus'd by congruity, as I hope I have made probable in the sixth Observation) the most simple and plain operation of Nature, of which, notwithstanding we are yet ignorant.

I.

Several Observables in the six-branched Figures form'd on the surface of Urine by freezing.

1 [11]The Figures were all frozen almost even with the surface of the Urine in the Vessel; but the bigger stems were a little prominent above that surface, and the parts of those stems which were nearest the center (a) were biggest above the surface.

2 I have observ'd several kinds of these Figures, some smaller, no bigger then a Two-pence, others so bigg, that I have by measure found one of its stems or branches above four foot long; and of these, some were pretty round, having all their branches pretty neer alike; other of them were more extended towards one side, as usually those very large ones were, which I have observ'd in Ditches which have been full of foul water.

3 None of all these Figures I have yet taken notice of, had any regular position in respect of one another, or of the sides of the Vessel; nor did I find any of them equally to exactness extended every way from the center a.

4 Where ever there was a center, the branchings from it, ab, ac, ad, ae, af, ag, were never fewer, or more then six, which usually concurr'd, or met one another very neer in the same point or center, a; though oftentimes not exactly; and were enclin'd to each other by an angle, of very near sixty degrees, I say, very neer, because, though having endeavoured to measure them the most acurately I was able, with the largest Compasses I had, I could not find any sensible variation from that measure, yet the whole six-branched Figure seeming to compose a solid angle, they must necessarily be somewhat less.

5 The middle lines or stems of these branches, ab, ac, ad, ae, af, ag, seem'd somewhat whiter, and a little higher then any of the intermediate branchings of these Figures; and the center a, was the most prominent part of the whole Figure, seeming the apex of a solid angle or pyramid, each of the six plains being a little enclin'd below the surface of the Urin.

6 The lateral branchings issuing out of the great ones, such as op, mq, &c. were each of them inclin'd to the great ones, by the same angle of about sixty degrees, as the great ones were one to another, and always the bigger branchings were prominent above the less, and the less above the least, by proportionate gradations.

7 The lateral branches shooting out of the great ones, went all of them from the center, and each of them was parallel to that great branch, next to which it lay; so that as all the branches on one side were parallel to one another, so were they all of them to the approximate great branch, as po, qr, as they were parallel to each other, and shot from the center, so were they parallel also to the great branch ab.

8 Some of the stems of the six branches proceeded straight, and of a thickness that gradually grew sharper towards the end, as ag.

9 Others of the stems of those branches grew bigger and knotty towards the middle, and the branches also as well as stems, from Cylinders grew into Plates, in a most admirable and curious order, so exceeding regular and delicate, as nothing could be more, as is visible in ab, ac, ad, ae, af, but towards the end of some of these stems, they began again to grow smaller and to recover their former branchings, as about k and n.

10 Many of the lateral branches had collateral branches (if I may so call them) as qm had many such as st, and most of those again subcollateral, as vw, and these again had others less, which one may call laterosubcollateral, and these again others, and they others, &c. in greater Figures.

11 The branchings of the main Stems joyn'd not together by any regular line, nor did one side of the one lie over the other side of the other, but the small collateral and subcollateral branches did lie at top of one another according to a certain order or method, which I always observ'd to be this.

12 That side of a collateral or subcollateral, &c. branch, lay over the side of the approximate (as the feathers in the wing of a Bird) whose branchings proceeded parallel to the last biggest stem from which it sprung, and not to the biggest stem of all, unless that were a second stem backwards.

13 This rule that held in the branchings of the Sexangular Figure held also in the branchings of any other great or small stem, though it did not proceed from a center.

14 The exactness and curiosity of the figuration of these branches, was in every particular so transcendent, that I judge it almost impossible for humane art to imitate.

15 Tasting several cleer pieces of this Ice, I could not find any Urinous taste in them, but those few I tasted, seem'd as insipid as water.

16 A figuration somewhat like this, though indeed in some particulars much more curious, I have several times observ'd in regulus martis stellatus, but with this difference, that all the stems and branchings are bended in a most excellent and regular order, whereas in Ice the stems and branchings are streight, but in all other particulars it agrees with this, and seems indeed nothing but one of these stars, or branched Figures frozen on Urine, distorted, or wreathed a little, with a certain proportion: Lead also that has Arsenick and some other things mixt with it, I have found to have its surface, when suffer'd to cool, figured somewhat like the branchings of Urine, but much smaller.

17 But there is a Vegetable which does exceedingly imitate these branches, and that is, Fearn, where the main stem may be observ'd to shoot out branches, and the stems of each of these lateral branches, to send forth collateral, and those subcollateral and those laterosubcollateral, &c. and all those much after the same order with the branchings, divisions, and subdivisions in the branchings of these Figures in frozen Urine; so that if the Figures of both be well consider'd, one would ghess that there were not much greater need of a seminal principle for the production of Fearn, then for the production of the branches of Urine, or the Stella martis, there seeming to be as much form and beauty in the one as in the other.

And indeed, this Plant of Fearn, if all particulars be well consider'd, will seem of as simple, and uncompounded a form as any Vegetable, next to Mould or Mushromes, and would next after the invention of the forms of those, deserve to be enquir'd into; for notwithstanding several have affirm'd it to have seed, and to be propagated thereby; yet, though I have made very diligent enquiry after that particular, I cannot find that there is any part of it that can be imagin'd to be more seminal then another: But this onely here by the by:

For the freezing Figures in Urine, I found it requisite,

First, that the Superficies be not disturbed with any wind, or other commotion of the air, or the like.

Secondly, that it be not too long exposed, so as that the whole bulk be frozen, for oftentimes, in such cases, by reason of the swelling the of Ice, or from some other cause, the curious branched Figures disappear.

Thirdly, an artificial freezing with Snow and Salt, apply'd to the outside of the containing Vessel, succeeds not well, unless there be a very little quantity in the Vessel.

Fourthly, If you take any cleer and smooth Glass, and wetting all the inside of it with Urine, you expose it to a very sharp freezing, you will find it cover'd with a very regular and curious Figure.

II.

Observables in figur'd Snow.

Exposing a piece of black Cloth, or a black Hatt to the falling Snow, I have often with great pleasure, observ'd such an infinite variety of curiously figur'd Snow, that it would be as impossible to draw the Figure and shape of every one of them, as to imitate exactly the curious and Geometrical Mechanisme of Nature in any one. Some coorse draughts, such as the coldness of the weather, and the ill provisions, I had by me for such a purpose, would permit me to make, I have here added in the Second Figure of the Eighth Scheme.[12]

In all which I observ'd, that if they were of any regular Figures, they were always branched out with six principal branches, all of equal length, shape and make, from the center, being each of them inclin'd to either of the next branches on either side of it, by an angle of sixty degrees.

Now, as all these stems were for the most part in one flake exactly of the same make, so were they in differing Figures of very differing ones; so that in a very little time I have observ'd above an hundred several cizes and shapes of these starry flakes.

The branches also out of each stem of any one of these flakes, were exactly alike in the same flake; so that of whatever Figure one of the branches were, the other five were sure to be of the same, very exactly, that is, if the branchings of the one were small Perallelipipeds or Plates, the branchings of the other five were of the same; and generally, the branchings were very conformable to the rules and method observ'd before, in the Figures on Urine, that is, the branchings from each side of the stems were parallel to the next stem on that side, and if the stems were plated, the branches also were the same; if the stems were very long, the branches also were so, &c.

Observing some of these figur'd flakes with a Microscope, I found them not to appear so curious and exactly figur'd as one would have imagin'd, but like Artificial Figures, the bigger they were magnify'd, the more irregularites appear'd in them; but this irregularity seem'd ascribable to the thawing and breaking of the flake by the fall, and not at all to the defect of the plastick virtue of Nature, whose curiosity in the formation of most of these kind of regular Figures, such as those of Salt, Minerals, &c. appears by the help of the Microscope, to be very many degrees smaller then the most acute eye is able to perceive without it. And though one of these six-branched Stars appear'd here below much of the shape described in the Third Figure of the Eighth Scheme; yet I am very apt to think, that could we have a sight of one of them through a Microscope as they are generated in the Clouds before their Figures are vitiated by external accidents, they would exhibit abundance of curiosity and neatness there also, though never so much magnify'd: For since I have observ'd the Figures of Salts and Minerals to be some of them so exceeding small, that I have scarcely been able to perceive them with the Microscope, and yet have they been regular, and since (as far as I have yet examin'd it) there seems to be but one and the same cause that produces both these effects, I think it not irrational to suppose that these pretty figur'd Stars of Snow, when at first generated might be also very regular and exact.

III.

Several kinds of Figures in Water frozen.

Putting fair Water into a large capacious Vessel of Glass, and exposing it to the cold, I observ'd after a little time, several broad, flat, and thin laminae, or plates of Ice, crossing the bulk of the water and one another very irregularly, onely most of them seem'd to turn one of their edges towards that side of the Glass which was next it, and seem'd to grow, as 'twere from the inside of the Vessel inwards towards the middle, almost like so many blades of Fern. Having taken several of these plates out of water on the blade of a Knife, I observ'd them figur'd much after the manner of Herring bones, or Fern blades, that is, there was one bigger stem in the middle like the back-bone, and out of it, on either side, were a multitude of small stiriae, or icicles, like the smaller bones, or the smaller branches in Fern, each of these branches on the one side, were parallel to all the rest on the same side, and all of them seem'd to make an angle with the stem, towards the top, of sixty degrees, and towards the bottom or root of this stem, of 120. See the fourth Figure of the 8. Plate.

I observ'd likewise several very pretty Varieties of Figures in Water, frozen on the top of a broad flat Marble-stone, expos'd to the cold with a little Water on it, some like feathers, some of other shapes, many of them were very much of the shape exprest in the fifth Figure of the 8. Scheme, which is extremely differing from any of the other Figures.

I observ'd likewise, that the shootings of Ice on the top of Water, beginning to freez, were in streight prismatical bodies much like those of roch-peter, that they crost each other usually without any kind of order or rule, that they were always a little higher then the surface of the Water that lay between them; that by degrees those interjacent spaces would be fill'd with Ice also, which usually would be as high as the surface of the rest.

In flakes of Ice that had been frozen on the top of Water to any considerable thickness, I observ'd that both the upper and the under sides of it were curiously quill'd, furrow'd, or grain'd, as it were, which when the Sun shone on the Plate, was exceeding easily to be perceiv'd to be much after the shape of the lines in the 6. Figure of the 8. Scheme, that is, they consisted of several streight ends of parallel Plates, which were of divers lengths and angles to one another without any certain order.

The cause of all which regular Figures (and of hundreds of others, namely of Salts, Minerals, Metals, &c. which I could have here inserted, would it not have been too long) seems to be deducible from the same Principles, which I have (in the 13. Observation) hinted only, having not yet had time to compleat a Theory of them. But indeed (which I there also hinted) I judge it the second step by which the Pyramid of natural knowledge (which is the knowledge of the form of bodies) is to be ascended: And whosoever will climb it, must be well furnish'd with that which the Noble Verulam calls Scalam Intellectus; he must have scaling Ladders, otherwise the steps are so large and high, there will be no getting up them, and consequently little hopes of attaining any higher station, such as to the knowledge of the most simple principle of Vegetation manifested in Mould and Mushromes, which, as I elsewhere endeavoured to shew, seems to be the third step; for it seems to me, that the Intellect of man is like his body, destitute of wings, and cannot move from a lower to a higher and more sublime station of knowledg, otherwise then step by step, nay even there where the way is prepar'd and already made passible; as in the Elements of Geometry, or the like, where it is fain to climb a whole series of Propositions by degrees, before it attains the knowledge of one Probleme. But if the ascent be high, difficult and above its reach, it must have recourse to a novum organum, some new engine and contrivance, some new kind of Algebra, or Analytick Art before it can surmount it.

* * * * *

Observ. XV. Of Kettering-stone, and of the pores of Inanimate bodies.

[13]This Stone which is brought from Kettering in Northampton-Shire, and digg'd out of a Quarry, as I am inform'd, has a grain altogether admirable, nor have I ever seen or heard of any other stone that has the like. It is made up of an innumerable company of small bodies, not all of the same cize or shape, but for the most part, not much differing from a Globular form, nor exceed they one another in Diameter above three or four times; they appear to the eye, like the Cobb or Ovary of a Herring, or some smaller fishes, but for the most part, the particles seem somewhat less, and not so uniform; but their variation from a perfect globular ball, seems to be only by the pressure of the contiguous bals which have a little deprest and protruded those toucht sides inward, and forc'd the other sides as much outwards beyond the limits of a Globe; just as it would happen, if a heap of exactly round Balls of soft Clay were heaped upon one another; or, as I have often seen a heap of small Globules of Quicksilver, reduc'd to that form by rubbing it much in a glaz'd Vessel, with some slimy or sluggish liquor, such as Spittle, when though the top of the upper Globules be very neer spherical, yet those that are prest upon by others, exactly imitate the forms of these lately mention'd grains.

Where these grains touch each other, they are so firmly united or settled together, that they seldom part without breaking a hole in one or th'other of them, such as a, a, a, b, c, c, &c. Some of which fractions, as a, a, a, a, where the touch has been but light, break no more then the outward crust, or first shell of the stone, which is of a white colour, a little dash'd with a brownish Yellow, and is very thin, like the shell of an Egg: and I have seen some of those grains perfectly resemble some kind of Eggs, both in colour and shape: But where the union of the contiguous granules has been more firm, there the divulsion has made a greater Chasm, as at b, b, b, in so much that I have observ'd some of them quite broken in two, as at c, c, c, which has discovered to me a further resemblance they have to Eggs, they having an appearance of a white and yelk, by two differing substances that envelope and encompass each other.

Previous Part     1  2  3  4  5  6  7  8  9  10     Next Part
Home - Random Browse