p-books.com
Insects and Diseases - A Popular Account of the Way in Which Insects may Spread - or Cause some of our Common Diseases
by Rennie W. Doane
Previous Part     1  2  3  4     Next Part
Home - Random Browse

STRUCTURE

In order that we may better understand why it is that the house-fly is capable of so much mischief, let us consider briefly a few points in regard to its structure, its methods of feeding and its life-history.

The large compound eyes are the most conspicuous part of the head (Fig. 39). In front, between the eyes, are the three-jointed antennae, the last joint bearing a short, feathery bristle. From the under side of the head arises the long, fleshy proboscis (Fig. 40). When this is fully extended it is somewhat longer than the head; when not distended and in use it is doubled back in the cavity on the under side of the head. About half-way between the base and the middle is a pair of unjointed mouth-feelers (maxillary palpi). At the tip are two membranous lobes (Fig. 41) closely united along their middle line. These are covered with many fine corrugated ridges, which under the microscope look like fine spirals and are known as pseudotracheae. Thus it will be seen that the house-fly's mouth-parts are fitted for sucking and not for biting. Its food must be in a liquid or semi-liquid state before it can be sucked through the tube leading from the lobes at the tip up through the proboscis and on into the stomach. If the fly wishes to feed on any substance such as sugar, that is not liquid, it first pours out some saliva on it and then begins to rasp it with the rough terminal lobes of the proboscis, thus reducing the food to a consistency that will enable the fly to suck it up. Many people think that house-flies can bite and will tell you that they have been bitten by them. But a careful examination of the offender, in such instances, will show that it was not a house-fly but probably a stable-fly, which does have mouth-parts fitted for piercing.



The thorax bears the two rather broad, membranous wings (Fig. 42) which have characteristic venation. Three of these veins end rather close together just before the tip of the wing, the posterior one of the group being bent forward rather sharply a short distance from the tip. The stable-fly has this vein slightly curved forward but not nearly so conspicuously (Fig. 43).

Nearly all the other flies that are apt to be mistaken for the house-fly do not have this vein curved forward. The wings, although apparently bare, are covered with a fine microscopic pubescence. Among these fine hairs on the wing as well as among similar fine ones and coarser ones all over the body, particles of dust and dirt or filth (Fig. 44) or, what interests us more just now, thousands of germs may find a temporary lodgment and later be scattered through the air as the insect flies. Or they may get on our food as the fly feeds or while it rests and combs its body with the rows of coarse hairs on its legs.

The legs are rather thickly covered with coarse hairs or bristles and with a mat of fine, short hairs. On some of the segments the larger hairs are arranged in rows and are used as a sort of comb with which the fly combs the dirt from the rest of its body. The last segment (Fig. 45) of the leg bears at its tip a pair of large curved claws and a pair of membranous pads known as the pulvillae. On the under side of the pulvillae are innumerable minute secreting hairs (Fig. 46) by means of which the fly is able to walk on the wall or ceiling or in any position on highly-polished surfaces.

HOW THEY CARRY BACTERIA

These same little pads, with their covering of secreting hairs, are perhaps the most dangerous part of the insect for they cannot help but carry much of the filth over or through which the fly walks, and as this may be well stocked with germs the danger is at once apparent.

As the result of a series of carefully planned experiments it has been demonstrated that the number of bacteria on a single fly may range all the way from 550 to 6,600,000 with an average for the lot experimented with of about one and one-fourth million bacteria to each fly. Now where do all these bacteria come from? Necessarily from the place where the fly breeds or where it feeds.



LIFE-HISTORY AND HABITS

The eggs of the house-fly may be laid on almost any kind of decaying or fermenting material. If this is kept moist and a proper temperature maintained the larvae or maggots (Fig. 47) that hatch from the eggs may develop. As a rule, however, these requirements are found only under certain conditions and are ordinarily found only in manure heaps or in privy vaults or latrines. All observers agree that the female fly prefers to deposit her eggs in horse manure when this can be found and when this is piled in heaps in the barn-yard (Fig. 48) or in the field the heat caused by the decay and fermentation makes ideal conditions for the development of the larvae. Cow manure may serve as a breeding-place to a limited extent. The flies are immediately attracted to human excrement and breed freely in it when opportunity offers. Decaying vegetables or fruit, fermenting kitchen refuse and other materials sometimes also serve as breeding-places.

In suitable places in warm weather the eggs will hatch in from eight to twelve hours and the larvae will become fully developed in from eight to fourteen days. They then change to pupae (Fig. 50) in which stage they may remain for another eight to twenty days when the adult flies will emerge. These figures must necessarily be indefinite because the weather and other conditions always vary. Under the most favorable conditions of moisture and temperature it is probably never less than eight days from egg to adult fly and under unfavorable conditions it may be as long as six weeks.

The larvae thrive best when the manure is kept quite wet. I have often found them in almost incredible numbers in stables that had not been cleaned for some time. The horses standing there at night added fresh material and kept it just wet enough to make conditions almost ideal (Fig. 49).

The pupae are usually found where the manure is a little dryer, but it must not be too dry. When the flies issue from the pupae they push their way up to the surface where they remain for a short time and allow the body to harden and the wings to dry before they fly away to other manure or, as too often happens, to some near-by kitchen or restaurant or market place.



Of course it is impossible for them to issue from this filth without more or less of it clinging to their bodies. Now if these flies would breed only in barn-yard manure and fly directly from the stable to the house there would be comparatively little reason to complain, at least from a sanitary standpoint, for the amount of barn-yard filth that they carried to our food would be of little consequence. But when they breed in privy vaults or similar places, or visit such places before coming into the house or dairy or market place the results may be much more serious.

FLIES AND TYPHOID

It has been abundantly demonstrated that the excrement or the urine of a typhoid patient may contain virulent germs for some time before he is aware that he has the disease, and it has been shown that the germs may be present for weeks or months, and in some cases even years after the patient has recovered. If a fly breeds in such infected material, or feeds or walks on it, it is very apt to get some of the germs on its body where they may retain their virulence for some time, and should it visit our food while covered with these germs some of them would probably be left there where they might produce serious results. More than that. If the fly should feed on such infected material the typhoid germs would go on developing in the intestine of the fly and would be passed out with the feces in which they retain their virulence for some days. In other words, the too familiar "fly-specks" are not only disgusting, but may be a very grave source of danger. It will be seen that in this way several members of a community might become infected with the typhoid germs before anyone was aware that there was a case of typhoid or a "bacillus carrier" in the neighborhood.

One more example out of the scores that might be cited to show how the fly may carry typhoid germs. They may enter the sick chamber in the home or in the hospital and there gain access to the typhoid germs. These they may carry to other parts of the house or to near-by houses, or the flies may light on passing carriages or cars and be carried perhaps for miles before they enter another house and contaminate the food there.

These are hypothetical cases, but they illustrate what is taking place hundreds of times every season all over the world wherever typhoid fever and flies occur, and no country or race is known to be immune from typhoid, and the fly is found "wherever man is found."

In the summer of 1898 a commission was appointed to investigate the prevalence of typhoid fever in the United States Army Concentration Camps. The following are some of the conclusions as reported by Dr. Vaughan:

"FLIES UNDOUBTEDLY SERVED AS CARRIERS OF THE INFECTION

"My reasons for believing that flies were active in the dissemination of typhoid may be stated as follows:

"a. Flies swarmed over infected fecal matter in the pits and then visited and fed upon the food prepared for the soldiers at the mess tents. In some instances where lime had recently been sprinkled over the contents of the pits, flies with their feet whitened with lime were seen walking over the food.

"b. Officers whose mess tents were protected by means of screens suffered proportionately less from typhoid fever than did those whose tents were not so protected.

"c. Typhoid fever gradually disappeared in the fall of 1898, with the approach of cold weather, and the consequent disabling of the fly.

"It is possible for the fly to carry the typhoid bacillus in two ways. In the first place, fecal matter containing the typhoid germ may adhere to the fly and be mechanically transported. In the second place, it is possible that the typhoid bacillus may be carried in the digestive organs of the fly and may be deposited with its excrement."

In Dr. Daniel D. Jackson's report to the Merchants' Association of New York on the "Pollution of New York Harbor as a Menace to the Health by the Dissemination of Intestinal Diseases Through the Agency of the Common House-fly," he shows graphically that the prevalence of typhoid and other intestinal diseases is coincident with the prevalence of flies, and that the greatest number of deaths from such diseases occurs near the river front where the open or poorly constructed sewers scatter the filth where the flies can feed on it, or along the wharves with their inadequate accommodations and the resulting accumulation of filth.

FLIES AND OTHER DISEASES

Not only is the house-fly an important factor in the dissemination of typhoid fever, but it has been definitely shown that it is capable of transmitting several other serious diseases.

The evidence that flies carry and spread the deadly germs of cholera is most conclusive. The germs may be carried on the body where they will live but a short time, or they may be carried in the alimentary canal where they will live for a much longer period and are finally deposited in the fly-specks where they retain their virulence for some time. Flies that had been allowed to contaminate themselves with cholera germs were allowed access to milk and meat. In both cases hundreds of colonies of the germs could later be recovered from the food. As with the typhoid germs milk seems to be a particularly good medium for the development of the cholera germs. In several of the experiments that have been made along this line the milk has been readily infected by the flies visiting it.

Of course an outbreak of cholera is of rare occurrence in our country, but unfortunately this is not so in regard to some other intestinal diseases such as diarrhea and enteritis which annually cause the death of many children, especially bottle-fed babies. Those who have made close studies of the way in which these diseases are disseminated are convinced that the flies are one of the most important factors in their spread.

It has long been observed that flies are particularly fond of sputum and will feed on it on the sidewalk, in the gutter, the cuspidor or wherever opportunity offers. It is well known, too, that the sputum of a consumptive contains myriads of virulent tubercular germs. A fly feeding and crawling over such material must necessarily get some of it on its body, and as it dries and the insect flies about the germs will be distributed through the air, possibly over our food. It has been shown that the excretion from a fly that has fed on tubercular sputum contains tubercular bacilli that may remain virulent for at least fifteen days. Thus we see again the danger that may lurk in the too familiar "fly-specks."

Although it is generally supposed that the flea is solely responsible for the spread of the bubonic plague and no doubt is the principal distributing agent, the fact must not be overlooked that the house-fly may also be of considerable importance in this connection. Carefully planned experiments have shown that flies that have become infected by being fed on plague-infected material may carry the germs for several days and that they may die of the disease. During plague epidemics flies may become infected by visiting the sores on human or rat victims or by feeding on dead rats or on the excreta of sick patients, and an infected fly is always a menace should it visit our food or open wounds or sores. Anthrax bacilli are carried about and deposited by flies showing the possibility of the disease being spread in this way.

Some believe that leprosy, smallpox and many other diseases are carried by the house-fly, so it is little wonder that it is fast losing its standing as a household companion and that we are beginning to regard it not only as a nuisance but as a source of danger which should no longer be tolerated in any community.

Of course only a small per cent of the flies that visit our food in the dairies or market places or kitchens actually carry dangerous diseases, but they are all bred in filth and it is not possible without careful experiments or laboratory analysis to determine whether any of the germs among the millions that are on their bodies are dangerous or not. The chances that they may be are too great. The only safe way is to banish them all or to see that all of our food is protected from them.

FIGHTING FLIES

Screens and sticky fly-paper have their places and give some little relief in a well-kept house. But of what use is it to protect your food after it has entered your home if in the stores, in the market place, in the dairy barn, or dairy wagon, in the grocers' and butchers' cart, it has been exposed to contamination by hundreds of flies that have visited it.

The problem is a larger one than keeping the house free from flies; larger but not more difficult, for the remedy is simple, effective, practicable and inexpensive. Destroy their breeding-places and you will have no flies. As the flies breed principally in manure the first remedial measure is to see that all manure is removed from the barn-yard at least once a week and spread over the fields to dry, for the flies cannot breed in the dry manure. If it is not practicable to remove it this often the manure should be kept in a bin that is closed so tight that no flies can get into it to lay their eggs. Sometimes the manure may be treated with some substance such as kerosene, crude oil, chlorid of lime, tobacco water or mixture of two or more of these and thus rendered unsuitable for the flies to breed in, but in general practice none of them has been found very satisfactory for the treatment is either not thorough enough or is too expensive of time and material.

Outdoor privies and cesspools must be carefully attended to. The latter can be easily covered so no flies can get in and if the filthy and in every way dangerous pit under the privy be filled and the dry-earth closet substituted one of the greatest sources of danger, especially in the country and in towns with inadequate sewerage facilities, will be done away with. After these things are done there remain only the garbage cans and the rubbish heaps to look after.

Of course your neighbor must keep his place clean too, for his flies are just as apt to come into your house as his, so the problem becomes one for the whole community.

Almost all cities and many of the smaller towns have ordinances which if enforced would afford adequate protection from flies, but they are seldom if ever rigidly enforced and it yet remains for some enterprising town to be able to advertise itself as a "speckless town" as well as a "spotless town."

AN EXPERT'S OPINION

In a recent important bulletin issued by the Bureau of Entomology, Dr. L.O. Howard discusses the economic importance of several of the insects that carry disease. I wish to quote two or three paragraphs from the pages in which he discusses the house-fly or typhoid fly to show the opinion of this excellent authority in regard to this pest.

"Even if the typhoid or house fly were a creature difficult to destroy, the general failure on the part of communities to make any efforts whatever to reduce its numbers could properly be termed criminal neglect; but since, as will be shown, it is comparatively an easy matter to do away with the plague of flies, this neglect becomes an evidence of ignorance or of a carelessness in regard to disease-producing filth which to the informed mind constitutes a serious blot on civilized methods of life."

On another page:

"We have thus shown that the typhoid or house fly is a general and common carrier of pathogenic bacteria. It may carry typhoid fever, Asiatic cholera, dysentery, cholera morbus, and other intestinal diseases; it may carry the bacilli of tuberculosis and certain eye diseases. It is the duty of every individual to guard so far as possible against the occurrence of flies upon his premises. It is the duty of every community, through its board of health, to spend money in the warfare against this enemy of mankind. This duty is as pronounced as though the community were attacked by bands of ravenous wolves."

Again:

"A leading editorial in an afternoon paper of the city of Washington, of October 20, 1908, bears the heading, 'Typhoid a National Scourge,' arguing that it is to-day as great a scourge as tuberculosis. The editorial writer might equally well have used the heading 'Typhoid a National Reproach,' or perhaps even 'Typhoid a National Crime,' since it is an absolutely preventable disease. And as for the typhoid fly, that a creature born in indescribable filth and absolutely swarming with disease germs should practically be invited to multiply unchecked, even in great centers of population, is surely nothing less than criminal."

The whole bulletin (No. 78, Bureau of Entomology) should be read and studied by all who are interested in this subject.

OTHER FLIES

Occasionally other flies looking more or less like the house-fly are seen in houses. Some of these have the same type of sucking mouth-parts and have habits very similar to the house-fly, but as they are usually much less common and as nearly all that has been said in regard to the house-fly would apply equally well to them and as the same measures should be adopted in fighting them they need not be discussed further here.

I have already called attention to the fact that a fly which looks very much like the house-fly is sometimes found in the house and will often bite severely. It has quite a different style of beak, one that is fitted for piercing so it may suck the blood of its victim (Fig. 51). As these flies often seem to be more persistent before a rain the weather prophet will tell you that "It is surely going to rain for the house-flies are beginning to bite."

These stable-flies, as they are called, are great pests of cattle and horses in some sections. It is thought that they are important factors in the spread of some of the diseases of domestic animals, and their habit of sometimes attacking human beings makes it possible for them to carry certain disease germs from animals to man or from man to man.



CHAPTER VI

MOSQUITOES

Mosquitoes are no more abundant now than they have been in the past, but when Linnaeus in 1758 made his list of all the animals known to exist at that time he catalogued only six species of mosquitoes. Only a few years ago, 1901, Dr. Theobald of the British Museum published a book on the mosquitoes of the world in which he listed three hundred and forty-three kinds. Soon other volumes appeared, adding more species, and systematists everywhere have been describing new ones until now the total number of described species is probably over five hundred, more than sixty of which occur in the United States.

This shows only one phase of the great interest that has been taken in the mosquitoes since the discovery of their importance as carriers of disease. Not only have they been studied from a systematic standpoint but an endless amount of work has been done and is being done in studying their development, habits, and structure until now, if one could gather together all that has been written about mosquitoes in the last ten or twelve years he would have a considerable library.



Those who are particularly interested in the group will find some of these books and papers easily accessible, so there may be given here only a brief summary of the more important facts in regard to the structure and habits of the mosquitoes in order that we may more readily understand the part that they play in the transmission of diseases and see the reasonableness of the recommendations in regard to fighting them.

THE EGGS

Mosquito eggs are laid in water or in places where water is apt to accumulate, otherwise they will not hatch. Some species lay their eggs in little masses (Fig. 52) that float on the surface of the water, looking like small particles of soot. Others lay their eggs singly, some floating about on the surface, others sinking to the bottom where they remain until the young issue. Some of the eggs may remain over winter, but usually those laid in the summer hatch in thirty-six to forty-eight hours or longer according to the temperature.

THE LARVAE

When the larvae are ready to issue they burst open the lower end of the eggs and the young wrigglers escape into the water. The larvae are fitted for aquatic life only, so mosquitoes cannot breed in moist or damp places unless there is at least a small amount of standing water there. A very little will do, but there must be enough to cover the larvae or they perish.

The head of the larvae of most species is wide and flattened. The eyes are situated at the sides, and just in front of them is a pair of short antennae which vary with the different species.

The mouth-parts too vary greatly according to the feeding habits. Some mosquito larvae are predaceous, feeding on the young of other species or on other insects. These of course have their mouth-parts fitted for seizing and holding their prey. Most of the wrigglers, however, feed on algae, diatoms, Protozoa and other minute plant or animal forms which are swept into the mouth by curious little brush-like organs whose movements keep a stream of water flowing toward the mouth.

Another group containing the Anopheles are intermediate between these two and have mouth-parts fitted for feeding on minute organisms as well as for attacking and holding other larger things.



A few kinds feed habitually some distance below the surface, others on the bottom, while still others feed always at the surface. With one or two exceptions, the larvae must all come to the surface to breathe (Figs. 53-57). Most species have on the eighth abdominal segment a rather long breathing-tube the tip of which is thrust just above the surface of the water when they come up for air. In this tube are two large vessels or tracheae which open just below the tip of the tube and extend forward through the whole length of the body, giving off branches here and there that divide into still smaller branches until every part of the body is reached by some of the small divisions of this tracheal system that carries the oxygen to all the tissues. The length of the breathing-tube is correlated with the feeding-habits of the larvae. Anopheles larvae which feed at the surface have very short tubes (Fig. 58), others that feed just below the surface have breathing-tubes as long or very much longer than the ninth abdominal segment. The last segment has at its tip four thin flat plates, the tracheal gills. These too are larger or smaller according to the habits of the larvae. Those species that feed close to the surface and have the tip of the breathing-tube above the surface most of the time have very small tracheal gills, while those that feed mostly on the bottom have them well developed.

When first hatched the larvae are of course very small. If the weather is warm and the food is abundant they grow very rapidly. In a few days the outer skin becomes rather firm and inelastic so it will not allow further growth. Then a new skin forms underneath and the old skin is cast off. This process of casting off the old skin is called molting, and is repeated four times during the one, two, three or more weeks of larval life.

PUPA

With the fourth molt the active feeding larva changes to the still active but non-feeding pupa (Fig. 59). The head and thorax are closely united and a close inspection will reveal the head, antennae, wings and legs of the adult mosquito folded away beneath the pupal skin. Instead of the breathing-tube on the eighth segment of the abdomen as in the larva, the pupa has two trumpet-shaped tubes on the back of the thorax through which it now gets its air from above the surface. The pupal stage lasts from two to five or six days or more. When the adult is ready to issue the pupal skin splits along the back and the mosquito gradually and slowly issues. It usually takes several minutes for the adult to issue and for its wings to become hard enough so it can fly. In the meantime, it is resting on the old pupal skin or on the surface of the water, where it is entirely at the mercy of any of its enemies that might happen along and is in constant danger of being tumbled over should the water not be perfectly smooth.



THE ADULT

The adult mosquito is altogether too familiar an object to need description, but it is necessary that we keep in mind certain particular points in regard to its structure, in order that we may better understand how it is that it is capable of transmitting disease.

If we examine closely the antennae of a number of mosquitoes that are bothering us with their too constant attentions we shall see that they all look very much alike (Fig. 62), small cylindrical joints bearing whorls of short fine hairs. But if we examine a number of mosquitoes that have been bred from a jar or aquarium we will find two types of antennae, the one described above belonging to the female. The antennae of the male (Fig. 63) are much more conspicuous on account of the whorl of dense, fine, long hairs on each segment. Another interesting difference in the antennae is to be noted in the size of the first joint. In both sexes it is short and cup-shaped, but in the male it is somewhat larger. This basal segment contains a highly complex auditory organ which responds to the vibrations of the whorls of hairs on the other segments. Interesting experiments have shown that these hairs vibrate best to the pitch corresponding to middle C on the piano, the same pitch in which the female "sings." Of course mosquitoes and other insects have no voice as we ordinarily understand the word, but produce sound by the rapid vibration of the wings or by the passage of air through the openings of the tracheae. The males and females are thus easily distinguished and, as we shall see later, this is of some importance for only the females can bite. The males and females differ in another way. Just below the antennae and at the sides of the proboscis or beak is a pair of three-to five-jointed appendages, the maxillary palpi or mouth-feelers which in the females of most species are very short (Fig. 64) while in the males they are usually as long as the proboscis (Fig. 65). The females of Anopheles and related forms have palpi quite as long as the males, but they are slender throughout while the male palpi are usually somewhat enlarged toward the tip and bear more or less conspicuous patches of rather long hairs or scales.



THE MOUTH-PARTS

The mouth-parts of the mosquito are of course of particular interest to us. At first they appear to consist of a long slender beak or proboscis, but by dissecting and examining with a microscope we find this beak to be made up of several parts (Fig. 66). The labium, which is the largest and most conspicuous, is apparently cylindrical but is grooved above throughout its length. At the tip of the labium are the labellae, two little lobes which serve to guide the piercing organs. Lying in this groove along the upper side of the labium are six very fine, sharp-pointed needles. The uppermost of these, the labrum-epipharynx, or labrum as we will call it, is the largest and is really a hollow tube very slightly open on its under side. Just below this is the hypopharynx, the lateral margins of which are very thin. Down through the median line of the hypopharynx runs a minute duct (Fig. 67, sal) which, though exceedingly small, is of very great importance, for through it is poured the saliva which may carry the malaria germs into the wound made when the mosquito bites. The other four needles consist of a pair of mandibles which are lance-shaped at the tip and a heavier pair of maxillae, the tips of which are serrate on one edge.

HOW THE MOSQUITO BITES

When the female mosquito is feeding on man or any other animal the tip of the labium is placed against the surface and the six needles are thrust into the skin, the labellae serving as guides. As they are thrust deeper and deeper the labium is bowed back to allow them to enter. As soon as the wound is made the insect pours out through the tube of the hypopharynx some of the secretion from the salivary glands and then begins to suck up the blood through the hollow labrum into the pharynx and on into the stomach.

The mouth-parts of the male differ in some important respects from those of the female. The hypopharynx is united to the labium, the mandibles are wanting and the maxillae are very much reduced so that the insect is unable to pierce the tough skin of animals. The male feeds on the juices of plants as do the females when they cannot get blood. It is not at all necessary for mosquitoes to have the warm blood of man or other animals. Comparatively few of them ever taste blood. They have been seen feeding on blossoms, ripe fruit, watermelons, plant juices, etc. They are very fond of ripe bananas and are fed on them in the laboratory when we wish to keep mosquitoes for experimental purposes.

THE THORAX

The middle part of the body, called the thorax, is really a strong box with heavy walls for the attachment of the powerful wing and leg muscles. The three pairs of legs are covered with hairs and scales, and their tips are provided with a pair of claws which vary somewhat in the different species. The wings (Fig. 68) are long and narrow with a characteristic venation. Along the veins and the margin of the wings are the scales which readily enable one to distinguish mosquitoes from other insects that may look much like them. In some species these scales are long and narrow, almost hair-like, in others they are quite broad and flat (Fig. 69). Just back of the wings is a pair of balancers, short thread-like processes knobbed at the end. These probably represent the second pair of wings with which most insects are provided, and seem to serve as balancers or orienting organs when the insect is flying. On the sides of the thorax are two small slit-like openings, the breathing-pores. These are the openings into the tracheal or respiratory system.

THE ABDOMEN

The long cylindrical abdomen is composed of eight segments. These are rather strongly chitinized above and below, but a narrow strip along the side is unchitinized. In this strip are situated the abdominal breathing-pores. The tip of the abdomen is furnished with a pair of movable organs, which in the male are variously modified and serve as clasping organs at mating time.

THE DIGESTIVE SYSTEM

The mouth-parts of the mosquito have just been described. It will be remembered that the labrum is provided with a groove. Through this the blood or other food is sucked up by means of a strong-walled pumping organ, the pharynx, situated in the head (Fig. 70). Just back of the pharynx is the esophagus which leads to the beginning of the stomach. Close to its posterior end the esophagus gives off three food reservoirs, two above and a single larger one below. In dissections these will often be seen to be filled with minute bubbles. The stomach reaches from the middle of the thorax to beyond the middle of the abdomen. At its posterior end are given off five long slender processes, the Malpighian tubules which are organs of excretion, acting like the kidneys of higher animals. The hindgut is that portion of the intestine from the stomach to the end of the body.



THE SALIVARY GLANDS

Lying under the alimentary canal in the forward part of the thorax are the salivary glands. There are two sets of these, each having three lobes with a common duct which joins the duct from the other set a short distance before they enter the base of the hypopharynx. Each of these lobes is made up of a layer of secreting cells (Fig. 71) which produces the saliva that is poured into the wound as soon as the insect pierces the skin of the victim, and we shall see, too, that the malarial germs also collect in these glands to be carried by the saliva to the new host.

EFFECTS OF THE BITE

After a mosquito has bitten a person and withdrawn the stylets, a small area about the puncture whitens, then soon becomes pink and begins to swell, then to itch and burn. Some people suffer much more from the bites of mosquitoes than do others. For some such bites mean little or no inconvenience, indeed may pass wholly unnoticed, to others a single bite may mean much annoyance, and several bites may cause much suffering.

After an hour or so the itching usually ceases, but in some cases it continues longer. In some instances little or no irritation is felt until some hours, sometimes as much as a day, after the bite. In such cases the effect of the bite is apt to be severe and to last for several days. Sometimes a more or less serious sore will follow a bite, probably due to infection of the wound by scratching. It is doubtless the saliva that is poured into the wound that causes the irritation. It is frequently asserted that if the mosquito is allowed to drink its fill and withdraw its beak without being disturbed no evil results will follow. Those who hold this theory say that the saliva that is poured into the wound is all withdrawn again with the blood if the mosquito is allowed to feed long enough. There may be some truth in this, but for most of us a bite means a hurt anyway and few will be content to sit perfectly still and watch the little pest gradually fill up on blood.

It is not known just what the action of the saliva is, its composition or reaction on the tissues. It is generally supposed to prevent coagulation of the blood that is to be drawn through the narrow tube of the labrum. Others think that its presence causes a greater flow of blood to the wound. But the sad part of it is, for us at least, that it hurts and may cause malaria and possibly other diseases.

HOW MOSQUITOES BREATHE

Mosquitoes and other insects do not have any nostrils nor do they breathe through any openings on the head. Along the sides of the thorax and abdomen is a series of very minute openings known as the spiracles. Through these the air passes into a system of air-tubes, the tracheae. There are two main trunks or divisions of the tracheae just inside the body-wall and a number of shorter connecting trunks. From these larger vessels arise a great number of smaller ones which branch and subdivide again and again until all the tissues are supplied by these minute little air-tubes that carry the oxygen to all parts of the body and carry off the waste carbon dioxid. These air-tubes are emptied and filled by the contractions of the walls of the abdomen. When the body-wall contracts the air is forced out of the thin-walled trachea through the spiracles; when the pressure is removed they are refilled by the fresh air rushing in.

THE BLOOD

After a mosquito has been feeding on a man or some other animal it is often so distended that the blood shows rich and red through the thin sides of the walls of the abdomen. This, however, is the blood of the victim and not of the mosquito. The blood of insects is not red but pale yellowish or greenish. It is not confined in definite vessels, but fills all the space inside the body cavity that is not occupied by some of the tissues or organs. It bathes the walls of the alimentary canal and gathers there the nourishment which it carries to all parts of the body. It does not carry oxygen or collect the carbon dioxid as does the blood of higher animals. That work, as we have just seen, is done by the air-tubes. Above the alimentary canal, extending almost the whole length of the abdomen and thorax, is a thin-walled pulsating vessel, the heart. This consists of a series of chambers each communicating with the one in front of it by an opening which is guarded by a valve. When one of these chambers contracts it forces the blood that is in it forward into the next chamber which, in its turn, sends it on. As the walls relax the valves at the sides are opened and the blood that is in the body-cavity rushes in to fill the empty chamber. As these regular rythmical pulsations recur the blood is forced forward through the heart into the head where it bathes the organs there. We shall see in another chapter that the malarial parasite escapes from the walls of the stomach of the mosquito into the blood in the body-cavity and finally reaches the salivary glands. As the heart is constantly driving blood to this part of the body the parasites readily reach the glands from which they finally escape into the new host.



CLASSIFICATION

For our purpose it will not be necessary to try to give a system of classification of all the mosquitoes. Those interested in this phase of the subject will find several books and papers devoted wholly to it. It is quite important, however, that we know something about a few of the more familiar groups and kinds, especially those concerned in the transmission of diseases.

THE ANOPHELES

In pointing out the differences between male and female mosquitoes we noted that in one group, the genus Anopheles, both sexes have long maxillary palpi (Figs. 72, 73). This is the most important character separating this genus from the other common forms and as the Anopheles are the malaria carriers it is important that this difference be remembered. Most of the members of this group have spotted wings (Fig. 74), but as some other common kinds also have spotted wings (Fig. 75) this character will not always be reliable. When an Anopheles mosquito is at rest the head and proboscis are held in one line with the body and the body rests at a considerable angle to the surface on which it is standing. Other kinds rest with the body almost or quite parallel to the surface on which they are standing. So if you find a female mosquito with long mouth-palpi and spotted wings resting at an angle to the surface on which it stands you may be reasonably sure that it is an Anopheles and therefore may be dangerous (Figs. 76, 77, 78, 79).

In the United States there are three species of Anophelesmaculipennis, punctipennis and crucians—which are common in various localities, and one or two other species that so far as known are local or rare.

The Anopheles eggs are not laid in masses as are the eggs of many other mosquitoes, but are deposited singly on the surface of the water where they may be found often floating close together.



The eggs (Figs. 80, 81) are elliptical in outline and are provided with a characteristic membranous expansion near the middle.

The larvae may be found at the proper season and in the localities where they are abundant in almost any kind of standing water, in clear little pools beside running streams, in the overflow from springs, in swamps and marshy lands, in rain-barrels or any other places or vessels where the water is quiet. They do not breed in brackish water. As they feed largely on the algae or green scum on the surface of the water they are especially apt to be found where this is present. We have already noted that their positions in the water differ from that assumed by other species (Fig. 82).

As the breathing-tube is very short the larvae must come close to the surface to breathe, and when they are feeding we find them lying just under and parallel to the surface of the water with their curious round heads turned entirely upside down as they feed on the particles that are floating on the surface (Figs. 83, 84).

The pupae do not differ very much from the pupae of other species although the breathing-tubes on the thorax are usually shorter and the creature usually rests with its abdomen closer to the surface, that is, it does not hang down from the surface quite as straight as do other forms (Fig. 85).

The adults may be found out of doors or in houses, barns or other outbuildings. They do not seem to like a draft and consequently will be more apt to frequent rooms or places where there is little circulation of air. Although they are usually supposed to fly and bite only in the evening or at night, they may occasionally bite in the daytime. One hungry female took two short meals from my arm while we were trying to get her to pose for a photograph one warm afternoon.

The female passes the winter in the adult condition, hibernating in any convenient place about old trees or logs, in cracks or crevices in doors or out of doors. In the house they hide in the closets, behind the bureau, behind the head of the bed, or underneath it, or in any place where they are not apt to be disturbed. During a warm spell in the winter or if the room is kept warm they may come out for a meal almost any time.

THE YELLOW FEVER MOSQUITO

Ranking next in importance to Anopheles as a disseminator of disease and in fact solely responsible for a more dreaded scourge, is the species of mosquito now known as Stegomyia calopus. While this species is usually restricted to tropical or semi-tropical regions it sometimes makes its appearance in places farther north, especially in summer time, where it may thrive for a time. The adult mosquito (Fig. 104) is black, conspicuously marked with white. The legs and abdomen are banded with white and on the thorax is a series of white lines which in well-preserved specimens distinctly resembles a lyre. These mosquitoes are essentially domestic insects, for they are very rarely found except in houses or in their immediate vicinity. Once they enter a room they will scarcely leave it except to lay their eggs in a near-by cistern, water-pot, or some other convenient place.

Their habit of biting in the daytime has gained for them the name of "day mosquitoes" to distinguish them from the night feeders. But they will bite at night as well as by day and many other species are not at all adverse to a daylight meal, if the opportunity offers, so this habit is not distinctive. The recognition of these facts has a distinct bearing in the methods adopted to prevent the spread of yellow fever. There are no striking characters or habits in the larval or pupal stages that would enable us to distinguish without careful examination this species from other similar forms with which it might be associated. For some time it was claimed that this species would breed only in clean water, but it has been found that it is not nearly so particular, some even claiming that it prefers foul water. I have seen them breeding in countless thousands in company with Stegomyia scutellaris and Culex fatigans in the sewer drains in Tahiti in the streets of Papeete. As the larvae feed largely on bacteria one would expect to find them in exactly such places where the bacteria are of course abundant.

The fact that they are able to live in any kind of water and in a very small amount of it well adapts them to their habits of living about dwellings.

So far as known the members of these two genera are the only two that are concerned in the transmission of disease in the United States. In other countries other species are suspected or proven disseminators of certain diseases, but these will be discussed in connection with the particular diseases in later chapters.

OTHER SPECIES

The many other species of mosquitoes that we have may be conveniently divided as to their breeding-habits into the fresh-water and the brackish-water forms. Among the fresh-water kinds some are found principally associated with man and his dwelling places, others live in the woods or other places and so are far less troublesome. Most of these do not fly far. Several of the species that breed in brackish water are great travelers and may fly inland for several miles. Thus the towns situated from one to three or four miles inland from the lower reaches of San Francisco Bay are often annoyed more by the mosquitoes that breed only in the brackish water on the salt marshes than they are by any of the fresh-water forms (Figs. 86, 87). The worst mosquito pest along the coast of the eastern United States and for some distance inland is a species that breeds in the salt marshes.

NATURAL ENEMIES OF MOSQUITOES

In combating noxious insects we learned long ago that often the most efficient, the easiest and cheapest way is to depend on their natural enemies to hold them in check. Under normal or rather natural conditions we find that they are usually kept within reasonable bounds by their natural enemies, but under the artificial conditions brought about by the settling and developing of any district great changes come about. It very often happens that these changes are favorable to the development of the noxious insects and unfavorable to the development of their enemies.

A striking example and one to the point is afforded in the introduction of mosquitoes into Hawaii. Up to 1826 there were no mosquitoes on these islands. It is supposed that they were introduced about that time by some ships that were trading at the islands. Indeed it is claimed that the very ship is known that brought them over from Mexico.

Once introduced they found conditions there very favorable to their development, plenty of standing water and few natural enemies to prey on them, so they increased very rapidly and gradually spread over all the islands of the group. This was the so-called night mosquito, Culex pipiens. Much later another species, Stegomyia calopus, just as annoying and much more dangerous was introduced and has also become very troublesome. We have a few species of top-minnows (Fig. 88) occurring in sluggish streams in the southern part of the United States that are important enemies of the mosquitoes of that region. A few years ago some of these were taken over to Hawaii and liberated in suitable places to see if they would not help solve the mosquito problem there. The fishes seem to be doing well. Already they are destroying many mosquito larvae, and there are indications that they are going to do an important work, but of course can be depended on only as an aid.



On account of the various habits of both the larvae and adults it will never be possible for any natural enemy or group of natural enemies effectively to control the mosquitoes of any region, but as certain of them are important as helpers they deserve to be mentioned.

ENEMIES OF THE ADULTS

Birds devour a few mosquitoes, the night-flying forms being particularly serviceable, but the number thus destroyed is probably so small as to be of little practical importance.

The dragon-flies (Figs. 89, 90, 91) or mosquito hawks have long been known as great enemies of mosquitoes, and they certainly do destroy many of them as they are hawking about places where mosquitoes abound. Dr. J.B. Smith of New Jersey very much doubts their efficiency, but observations made by other scientific men would seem to indicate that they often devour large numbers of mosquitoes during the course of the day and evening.

Spiders and toads destroy a few mosquitoes each night. Certain external and internal parasites destroy a few more, but the sum total of all of these agencies is probably not very considerable, for while the adults may have several natural enemies they are not of sufficient importance to have any appreciable effect on the number of mosquitoes in a badly infested region.

ENEMIES OF THE LARVAE AND PUPAE

The larvae and pupae on the other hand have many important enemies. Indeed under favorable conditions these may keep small ponds or lakes quite free from the pests. The predaceous aquatic larvae of many insects feed freely on wrigglers. The larvae of the diving beetles which are known as water-tigers are particularly ferocious and will soon destroy all the wrigglers in ponds where they are present (Fig. 92). Dragon-fly larvae also feed freely on mosquito larvae. Whirligig beetles are said to be particularly destructive to Anopheles larvae and many other insects such as water-boatmen, back-swimmers, etc., feed on the larvae of various species. A few of these introduced into a breeding-jar with Anopheles larvae will soon destroy all of them, even the very young bugs attacking larvae much larger than themselves.

It is interesting to note that the larvae of some mosquitoes are themselves predaceous and feed freely on the other wrigglers that may chance to be in the same locality.



Various species of fish are, however, the most important enemies of the mosquitoes. Great schools of tide-water minnows (Fig. 93) are often carried over the low salt-marshes by the extreme high-tides and left in the hundreds of tide pools as the tide recedes. No mosquitoes can breed in a pool thus stocked with these fish. In the fresh-water streams and lakes there are several species of the top-minnows, sticklebacks (Fig. 94), etc., that feed voraciously on mosquito larvae and unless the grass or reeds prevent the fish from getting to all parts of the ponds or lakes very few mosquitoes can breed in places where they are present.

Minute red mites such as attack the house-flies and other insects sometimes attack adult mosquitoes, but they are rarely very abundant. Parasitic roundworms attack certain species. Others suffer more or less from the attacks of various Sporozoan parasites.

FIGHTING MOSQUITOES

When mosquitoes are bothering us we usually begin by trying to kill the individual pests that are nearest to us. We try to crush them if they bite us; we screen the doors and windows to keep them from the house. In warmer countries the people are a little more hospitable and do not screen the mosquitoes out of the house entirely, but screen the beds for protection at night, and if the mosquitoes get too insistent during the day the bed makes a safe and comfortable retreat. All the mosquitoes in a room may be killed by fumigating with sulphur at the rate of two pounds to the thousand cubic feet of air-space. Pyrethrum is also used largely, but it only stupefies the mosquitoes temporarily instead of killing them. While in that condition they may be swept up and destroyed.

Various substances are sometimes used as repellants by those who must be in regions where the mosquitoes are abundant. With many of these, however, "the cure is worse than the disease." Smudges are often built to the windward of a house or barn-yard and the smoke from a good smoldering fire will keep a considerable area quite free from mosquitoes. The man who can keep himself enveloped in a cloud of tobacco smoke will not be bothered by mosquitoes. Oil of pennyroyal, oil of tar or a mixture of these with olive oil, and various other concoctions are sometimes smeared over the face and hands. These will furnish protection as long as they last. Dr. Smith says that he has found oil of citronella quite effective and of course less objectionable than the other things usually used. Care should be taken not to get it in the eyes. An ointment made of cedar oil, one ounce; oil of citronella, two ounces; spirits of camphor, two ounces, is said to make a good repellant and is effective for a long time.



FIGHTING THE LARVAE

All of the efforts directed against the adult mosquitoes are usually of little avail in decreasing the number in any region. It is comparatively easy, however, to fight them successfully in the larval stage. We have seen that standing water is absolutely necessary for mosquitoes to breed in. This makes the problem much simpler than if they could breed in any moist places such as well-sprinkled lawns, a shady part of the garden, etc. The whole problem of successful campaigns against the mosquitoes resolves itself into the problem of finding and destroying or properly treating their breeding-places. We have seen how certain kinds, such as the yellow fever mosquito, are "domestic" species. They never go far from their breeding-places. If a house is infected by one of these species the immediate premises should be searched for the source. Cisterns, rain-barrels, sewer-traps, cesspools, tubs or buckets of water or old tin cans in out-of-the-way corners, are all suitable places for them to breed in. Cisterns and rain-barrels should be thoroughly screened so that no mosquitoes can get in or out, or the surface should be covered with a film of kerosene which will kill all the larvae in the water when they come to the surface to breathe, and will also kill the females when they come to deposit their eggs. The vent to open cesspools should be thoroughly screened or the surface of the water kept well covered with oil. Water standing in any vessels in the yards should be emptied every week or ten days and the old tin cans destroyed or hauled away. In fighting these domestic species you need be concerned only with your own yard and that of your near-by neighbors. Other species, while also rather local in their distribution, fly much farther than the really domestic ones. In fighting these the region for a considerable distance around must be taken into consideration. Watering-troughs (Fig. 95) that are left filled from week to week, the overflow from such places, and the tracks made in the mud round about them (Fig. 96), small sluggish streams, irrigating ditches, and small ponds or lakes not supplied with fish are excellent breeding-places for several species of mosquitoes including Anopheles and others. The remedy at once suggests itself. The watering-trough can be emptied and renewed every week during the summer time, the overflow can be taken care of in a ditch that will lead it away from the trough to where it will sink into the ground, the banks of the streams or ponds or lakes can be cleared in such a way that fish can get to all parts of the water; most of the small ponds can be drained or their surface may be covered over with a thin film of kerosene. This is best applied as a spray; one ounce to fifteen square feet will suffice. If the oil is simply poured over the surface more will be required.

The fighting of the species that breed on the extensive salt-marshes in many regions is a larger and more difficult problem, but as it is a matter that usually concerns large communities, sometimes whole states, it can be dealt with on a larger scale. The very excellent results that have been accomplished in New Jersey and on the San Francisco peninsula, and in a smaller way in other places, show what may be done if the community goes about the fight in an intelligent manner. In the fight in New Jersey hundreds of acres of tide-lands have been drained so that they no longer have tide pools standing where the mosquitoes may breed. When it is impracticable to drain them the pools may be sprayed occasionally with kerosene.

The value of the land that is reclaimed by a good system of draining is often enough to pay many times over the cost of draining, thus the mosquitoes are gotten rid of and the land enhanced in value by a single operation.



CHAPTER VII

MOSQUITOES AND MALARIA

Ever since the beginning of history we have records of certain fevers that have been called by different names according to the people that were affected. As we study these names and the various writings concerning the fevers we find that a great group of the most important of them are what we to-day know as malarial fevers. Not only are these ills as old as history but they have been observed over almost the entire inhabited earth. There are certain regions in all countries where malaria does not occur, but almost always it will be found that other regions near by are infected and it very often happens that these infected regions are the most profitable parts of the land, the places where water is plentiful and vegetation is luxuriant. Indeed the coincidence of these two things, low-lying lands with an abundance of water, particularly standing water, and malaria has always been noted and gave rise to the earliest theories in regard to the cause of the disease.

For instance, we find some of the very early writers emphasizing the point that swampy localities should be avoided for they produce animals that give rise to disease, or that the air is poisoned by the breath of the swamp-inhabiting animals.

These views of the origin of the fever prevailed until about the beginning of the eighteenth century when the recently discovered microscope began to reveal the various kinds of animalculae to be found in decaying material.

In 1718 Lancisi held that the myriads of insects, particularly gnats or mosquitoes, that arose from such swampy regions might carry some of these poisonous substances and by means of their proboscis introduce them into the bodies of the people, and although he had made no experiments to test the assumption he did not consider it impossible that such insects might also introduce the smallest animalculae into the blood. It took almost two centuries of study and investigation before this guess was proved to be right.

One reason why the mosquitoes were not earlier associated with these diseases was that all who investigated the matter at all turned their attention to the bad condition of the air in these swampy regions. Malaria means bad air. We all know that we can see the mists arising from such regions, particularly in the evening or at night, and as exposure to these mists very often meant an attack of malaria they were naturally supposed to be the cause of the disease. So for a long time the whole attention of investigators was turned toward studying and analyzing these vapors, and various experiments were made which seemed to show conclusively that the malaria was caused only by these emanations. The investigations even went so far that the exact germs that were supposed to cause the fever were separated and experimented with.

THE PARASITE THAT CAUSES MALARIA

The blood had been studied time and again and the characteristic appearance of the blood of a malarial patient was well known. In 1880 Laveran, a French army surgeon in Algiers, began to study the blood of such patients microscopically and soon was able to demonstrate the parasite that caused the disease. His discoveries were not readily accepted, but other investigations soon confirmed his observations and the fact was gradually firmly established. Not until recently, however, did this distinguished physician receive a full recognition of his work. A few years ago he was awarded the Nobel prize for medicine, perhaps the highest honor that can be bestowed on any physician. It is interesting, too, to note in this connection that it was another French surgeon who in 1840 discovered that sulphate of quinine is a specific for malaria.



The next important step was made in 1885 by Golgi, an Italian, who studied the life-history of the parasite in the blood and distinguished the three forms which cause the three most familiar kinds of malarial fevers, the tertian, the quartan and the remittent types. From this time on this parasite has been studied by physicians of many nationalities and the whole course of its life-history worked out. In order that we may understand how it was that mosquitoes were determined to be the means of disseminating this parasite we will discuss first its life-history in the human blood.

The parasites that cause the malarial fevers are Sporozoans and belong to the genus Plasmodium. Other names such as Haemamoeba and Laverania have been used for them, but the term Plasmodium is the one now most commonly employed. The three most common species are vivax, malariae and falciparum, causing respectively the tertian, quartan and remittent fevers.

LIFE-HISTORY OF PARASITE

The life-history of all of these is very similar, the principal difference being in the length of time it takes them to sporulate. Let us begin with the parasite after it has been introduced into the blood and trace its development there. At first it is slender and rod-like in shape. It has some power of movement in the blood-plasm. Very soon it attacks one of the red blood-corpuscles and gradually pierces its way through the wall and into the corpuscle substance (Fig. 99); here it becomes more amoeboid and continues to move about, feeding all the time on the corpuscle substance, gradually destroying the whole cell. As the parasite feeds and grows there is deposited within its body a blackish or brownish pigment known as melanin.

During the time that the parasite is feeding and growing it is also giving off waste products, as all living forms do in the process of metabolism, but as the parasite is completely inclosed in the corpuscle wall these waste products cannot escape until the wall bursts open. After about forty hours if the parasite is vivax or about sixty-five hours if it is malariae it becomes immobile, the nucleus divides again and again and the protoplasm collects around these nuclei, forming a number of small cells or spores, as they are called. In about forty-eight or seventy-two hours, depending on whether the parasite is vivax or malariae the wall of the corpuscle bursts and all these spores with the black pigment and the waste products that have been stored away within the cell are liberated into the blood-plasm.



These spores are round or somewhat amoeboid and are carried in the blood for a short time. Very soon, however, each one attacks a new red corpuscle and the process of feeding, growth and spore-formation continues, taking exactly the same time for development as in the first generation, so every forty-eight hours in the case of the vivax, and every seventy-two hours in the case of the malariae a new lot of these spores and the accompanying waste products are thrown out into the blood. Thus in a very short time many generations of this parasite occur and thousands or hundreds of thousands of the red-blood corpuscles are destroyed, leaving the patient weak and anemic. It will be seen, too, that the recurrence of the chills and fevers is simultaneous with the escaping of the parasites from the blood-corpuscles, together with the waste products of their metabolism.

These waste products are poisonous, and it is believed that this great amount of poison poured into the blood at one time causes the regular recurring crisis. Zooelogists well know that this process of asexual reproduction, i. e., reproduction without any conjugation of two different cells, cannot go on indefinitely, and those who were studying the life-cycle of these parasites were at a loss to know where the sexual stage took place. In the meantime studies of other parasites more or less closely related to Plasmodium showed that the sexual stage occurred outside the vertebrate host. The remarkable work of Dr. Smith on the life-history of the germ that causes the Texas fever of cattle had a strong influence in directing the search for this other stage of the malarial parasite. Another thing that indicated that this sexual generation must take place outside the body of the vertebrate host was the fact that the investigators found that the parasites in certain of the cells did not sporulate as did the others. When these individuals were drawn from the circulation and placed on a slide for study it was found that they would swell up and free themselves from the inclosing corpuscle and some of them would emit long filaments which would dart away among the corpuscles.

Many men have worked on this problem, but perhaps the most credit for its solution will always be given to Sir Patrick Manson, the foremost authority on tropical diseases, and to Ronald Ross, a surgeon in the English army. There is no more interesting and inspiring reading than that which deals with the development of the hypothesis by Manson and the persistent faith of Ross in the correctness of this theory, and his continuous indefatigable labors in trying to demonstrate it. It was an important piece of scientific work, and shows what a man can do even when the obstacles seem insurmountable.

THE PARASITE IN THE MOSQUITO

Briefly stated again, the problem was this: We have here a parasite in the blood which behaves as do many other forms of life. Some of these parasites do not go on with their development until they are removed from the circulation. Now, how are they thus removed from the circulation under normal conditions? This must first be solved before the still greater and more important problem of how the parasite gets from one human host to another can be taken up. In studying this over Manson reasoned that certain suctorial insects were the agencies through which blood was most commonly removed from the circulation and he ventured the guess that this change in the parasite that may be seen taking place on the slide under the microscope, normally takes place in the stomach of some insect that sucks man's blood. Ross was greatly impressed with the theory and began his long and apparently hopeless task of finding these parasites in the stomach of some insect. When we remember that they are so minute that they can only be seen by the use of the highest power of the microscope we can realize something of the magnitude of the task. Ross, who was at that time stationed in India, selected the mosquito as the most likely of the insects to be the host that he was looking for. For over two and one-half years he worked with entirely negative results, for after examining thoroughly many thousands of mosquitoes he found no trace of the parasite.

Practically all his work was done on the most common mosquito of the region, a species of Culex. But one day a friend sent him a different mosquito, one with spotted wings, and in examining it he was interested to note certain oval or round nodules on the outer walls of the stomach. On closer examinations he found that each of these nodules contained a few granules of the coal-black melanin of malarial fever. Further studies and experiments showed that these particular cells could always be found in the walls of the stomach of this particular species of mosquito a few days after it had bitten a malarial patient. This epoch-making discovery was made in 1898. Ross was detailed by the English government to devote his whole time to the further solution of the problem, and after two years more of careful experimentation and study was able to give a complete life-history of this parasite. His experiments have been repeated many times, and the conclusions he arrived at are as undeniable as any of the known facts of science.

The whole life-history as we now know it can be summed up as follows: The parasites develop within the circulation but certain of them seem to wander about and do not go on with their development there. When these particular parasites are taken into the stomach of most mosquitoes they are digested with the rest of the blood. But when they are taken into the stomach of a mosquito belonging to the genus Anopheles or other closely related genera they are not digested but go on with their development, conjugation and fertilization taking place, resulting in a more elongated form which makes its way through the walls of the stomach on the outside of which are formed the little nodules discovered by Ross on his mosquitoes. Within these nodules further division and development takes place until finally the nodule is burst open and many thousand minute rod-like organisms, sporozoites, are turned loose into the body-cavity of the mosquito. Owing to some unknown cause these little organisms are gathered together in the large vacuolated cells of the salivary glands of the mosquito, and when the mosquito bites a man or any other animal they pour down through the ducts with the secretion and are thus again introduced in the circulation.

The nodules or cysts on the walls of the stomach of the mosquito may contain as many as ten thousand sporozoites, and as many as five hundred cysts may occur on a single stomach.

It takes ten, twelve or more days from the time the parasites are taken into the stomach of the mosquito before they can go through their transformations and reach the salivary gland, the time depending on the temperature. So it is ten or twelve days or sometimes as much as eighteen or twenty days from the time an Anopheles bites a malarial patient before it is dangerous or can spread the disease. On the other hand, the sporozoites may lie in the salivary gland alive and virulent for several weeks. It does not give up all the parasites at one time, so that three or four or more people may be affected by a single mosquito.

It is well known that two parasites may often be seen in the same corpuscle. This is often simply a case of multiple infection, but Dr. Craig has very recently shown that under certain conditions two individuals may enter the same corpuscle and conjugate and the resulting individual will be resistant to quinine and may remain latent in the spleen or bone marrow for a long time. Under favorable conditions it may again begin the process of multiplication and the patient will suffer a relapse.

SUMMARY

Now let us sum up some of the reasons why we believe that the malaria fever can be transmitted only through the agency of mosquitoes. First, we know the life-history of the parasite, it has been studied in both of its hosts. Attempts have been made to rear it in other hosts but without avail, and we know from the general relations of the parasite that it must have this sexual as well as the asexual generations. Second, in some regions which would seem to be malarial, that is, where the miasmatic mists arise, no malaria occurs. Why? Usually it can be definitely shown that no Anopheles occur there. Other mosquitoes may be there in abundance, but if no Anopheles, there is no malaria. In certain regions this is well demonstrated. The west coast of Africa is one of the worst pest-holes of malaria and Anopheles. The east coast has no malaria and no Anopheles. In many islands the same condition exists. On the other hand, the Fiji Islands have Anopheles but no malaria. No malaria has ever been introduced there to infect the mosquitoes. In the same way Stegomyia occurs in some of the South Sea islands and yet there is no yellow fever there.

EXPERIMENTS

We may review, too, a few of the classic experiments that have served to show that malaria can be contracted in no other way than through the bite of the mosquito.

For many years Grassi, an Italian, devoted almost his whole time to the study of malaria. In 1900 he received permission from the government to experiment on the employees of a piece of railroad that was being built through a malarial region. This was divided for the purpose of the experiment into three sections, a protected zone in the middle and an unprotected zone at each end.

Those working in the protected zone had their houses completely screened and no one was allowed out of doors after sunset except they were protected with veils and gloves. Early in the season they were all given doses of quinine to prevent auto-infection. In the unprotected zone no screens were used and every one was allowed to go without special protection. The result for the summer was that there were no new cases of fever in the protected zone. In the unprotected zones practically all had the fever as usual.



In the same year two English physicians, Sambon and Low, went to Italy where they built a cabin in one of the marshes noted as being a malaria pest-hole. The house was thoroughly screened so that no mosquitoes could enter, but the windows were always open so as to admit the air freely day and night. Here they lived for three months, out of doors as much as they pleased during the day but inside where they were protected from the mosquitoes at night. No quinine was used and no fever developed, although all about them other people were having the fever as usual.

Another English physician who had not been in malarial regions allowed himself to be bitten by infected mosquitoes sent from a malarial locality. In due time he developed the fever. Many other experiments made in various places might be cited. The results have all been practically the same. To-day the soldiers of many civilized nations are required to protect themselves from mosquitoes because it has been found that it pays. Disease has always been a worse terror than bullets in any war, and we are fast learning that the great loss from diseases heretofore considered unavoidable may be very largely eliminated by proper sanitary arrangements and protection from noxious insects.



CHAPTER VIII

MOSQUITOES AND YELLOW FEVER

Yellow fever is a disease, principally of seaport towns, from which the United States has suffered more than any other country. It is endemic only in tropical regions but is often carried to subtropical, sometimes even to temperate zones where, if the proper mosquitoes exist, it may rage until frost.

Vera Cruz, Havana, Rio de Janeiro, and the west coast of Africa were long regarded as permanent endemic foci, the disease appearing there in epidemic form from time to time, often spreading to other ports in more or less close communication with such places. In the United States the Gulf states have been the greatest sufferers from the disease, although it has spread as far as Baltimore, Philadelphia and Washington, where at rare intervals it was most serious, abating its ravages only when frost came.

The last severe outbreak occurred in New Orleans in 1905 when eight thousand cases and nine hundred deaths occurred. At that time there was waged one of the most remarkable warfares against death in its most terrifying form that the world has ever known. And, thanks to the achievements of science, particularly to the investigations of three men, one of whom gave his life to the cause, the fight was successful and this dreadful outbreak was checked just at the time when according to all precedent it should have been at its height.

This result which at other times and under other conditions would have been considered miraculous was achieved not by the usual custom of isolation, quarantine, etc., but by a direct, we may almost say hand to hand, conflict with mosquitoes: the mosquitoes belonging to a particular genus and species, Stegomyia calopus (fasciata).

Before taking up a discussion of this achievement in New Orleans let us consider first the work of the men that made such results possible.

For many years the cause and methods of dissemination of this disease had been a puzzle to physicians and scientists. Very early it was believed that it might be transmitted through the air, and the fact that infection usually occurred in the vicinity of the water and in the tropics or in midsummer led to the belief that the disease was due to fermentation. This theory received strong support in the fact that serious outbreaks of the fever often followed the coming into port of vessels from the tropics with the water in their holds in an offensive condition. When it was discovered that bacteria were the cause of fermentation and also of many diseases this theory was considered abundantly proven. From time to time, announcements have been made that the particular species of bacteria that causes the disease has been isolated, but there has always been something lacking in the final proof.

Yellow fever has always been regarded as a very highly contagious as well as infectious disease, and the utmost precaution has been taken to isolate the patients when possible and in recent years strict quarantines have been established against infected localities and no person or commerce or even the mails were allowed to come from such places without thorough fumigations. But all these things proved unsatisfactory. The disease could not ordinarily be checked by simply isolating the patients. Many people became sick without ever having been near a yellow fever patient, while others worked in direct daily contact with the disease and did not suffer from it. Those who had once had it and recovered became practically immune, rarely suffering from a second attack. Negroes may suffer from the disease, but are usually regarded as practically immune.



It was early observed, too, that the danger zone might be quite well defined and that outside this zone one would be safe. More than a century ago the British troops and other inhabitants of Jamaica found that by retreating to the mountains during the warm weather the non-immunes could escape the fever. It was also observed that those who slept on the first floor were more apt to take the disease than those on the second floor.

THE YELLOW FEVER COMMISSION

In 1900, during the American occupation of Cuba, yellow fever became very prevalent there. A board of medical officers was ordered to meet in Havana for the purpose of studying the disease under the favorable opportunities thus afforded. This board, which came to be known as the Yellow Fever Commission, was composed of Drs. Walter Reed, James Carroll, Jessie W. Lazear and Aristides Agramonte of the United States Army. Agramonte was a Cuban and an immune, the others were non-immunes. Dr. Manson in his lectures on Tropical Medicines says of them:

"I cannot pass on, however, to what I have to say in connection with this work without a word of admiration for the insight, the energy, the skill, the courage, and withal the modesty and simplicity of the leader of that remarkable band of workers. If any man deserved a monument to his memory, it was Reed. If any band of men deserve recognition at the hands of their countrymen, it is Reed's colleagues."

Their first work was to determine whether any of the germs that had been claimed to be the cause of yellow fever were really responsible for the disease. Bacillus icteroides that for some time and by some investigators had been named as the offender was particularly investigated, but was proved to be a secondary invader only.

Dr. Charles Finlay of Havana had been claiming for some years that the yellow fever was transmitted by means of the mosquito and possibly by other insects also. He even claimed to have proved this theory experimentally. We know now, however, that there must have been errors in his experiments and that his patients became infected from sources other than those he was dealing with.

The Yellow Fever Commission decided to put this theory to the test and secured a number of volunteers for the experiments. The first thing was to let an infected mosquito bite some non-immune person. How this was done and the results, may be told in Dr. Carroll's own words.

EXPERIMENTS

"Two separate lines of work now presented: one, the study of the bacterial flora of the intestine and anaerobic cultures from the blood and various organs; the other, the theory of the transmission of the disease by the mosquito, which had been advanced by Dr. Carlos Finlay in 1881. After due consideration it was decided to investigate the latter first. Then arose the question of the tremendous responsibility involved in the use of human beings for experimental purposes. It was concluded that the results themselves, if positive, would be sufficient justification of the undertaking. It was suggested that we subject ourselves to the same risk and this suggestion was accepted by Dr. Reed and Dr. Lazear. It became necessary for Dr. Reed to return to the United States and the work was begun by Dr. Lazear, who applied infected mosquitoes to a number of persons, himself included, without result. On the afternoon of July 27, 1900, I submitted myself to the bite of an infected mosquito applied by Dr. Lazear. The insect had been reared and hatched in the laboratory, had been caused to feed upon four cases of yellow fever, two of them severe, and two mild. The first patient, a severe case, was bitten twelve days before; the second, third and fourth patients had been bitten six, four and two days previously, and were in character mild, severe and mild respectively. In writing to Dr. Reed that night of the incident, I remarked jokingly that if there was anything in the mosquito theory, I should have a good dose. And so it happened. After having slight premonitory symptoms for two days, I was taken sick on August 31, and on September 1, I was carried to the yellow fever camp. My life was in the balance for three days, and my chart shows that on the fifth, sixth and seventh days my urine contained eighth-tenths and nine-tenths of moist albumin. On the day I was taken sick, August 31, 1900, Dr. Lazear applied the same mosquito, with three others, to another individual who suffered a comparatively mild attack and was well before I had left my bed. It so happened that I was the first person in whom the mosquito was proved to convey the disease.

"On the eighteenth of September, five days after I was permitted to leave my bed, Dr. Lazear was stricken, and died in convulsions just one week later, after several days of delirium with black vomit. Such is yellow fever.

"He was bitten by a stray mosquito while applying the other insects to a patient in one of the city hospitals. He did not recognize it as a Stegomyia, and thought it was a Culex. It was permitted to take its fill and he attached no importance to the bite until after he was taken sick, when he related the incident to me. I shall never forget the expression of alarm in his eyes when I last saw him alive in the third or fourth day of his illness. The spasmodic contractions of his diaphragm indicated that black vomit was impending, and he fully appreciated their significance. The dreaded vomit soon appeared. I was too weak to see him again in that condition, and there was nothing that I could do to help him.

"Dr. Lazear left a wife and two young children, one of whom he had never seen."

These experiments and many others like them conducted on soldiers and Spanish immigrants proved that this particular mosquito would transmit the disease under certain conditions.

1. The mosquito must bite the patient during the first three days of the fever; after that a yellow fever patient cannot infect a mosquito.

2. A period of twelve days must elapse before the mosquito is able to infect another person. After that she may infect anyone she may bite; that is, the germs remain virulent during the rest of the mosquito's life. The French Yellow Fever Commission working in Rio de Janeiro claim that the first generation of offspring from such an infected mosquito is capable of causing the disease after they are fourteen days in the adult condition.

Previous Part     1  2  3  4     Next Part
Home - Random Browse