p-books.com
Darwin and Modern Science
by A.C. Seward and Others
Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18     Next Part
Home - Random Browse

In general it may be said that mimetic butterflies are comparatively rare species, but there are exceptions, for instance Limenitis archippus in North America, of which the immune model (Danaida plexippus) also occurs in enormous numbers.

In another mimicry-category the imitators are often more numerous than the models, namely in the case of the imitation of DANGEROUS INSECTS by harmless species. Bees and wasps are dreaded for their sting, and they are copied by harmless flies of the genera Eristalis and Syrphus, and these mimics often occur in swarms about flowering plants without damage to themselves or to their models; they are feared and are therefore left unmolested.

In regard also to the FAITHFULNESS OF THE COPY the facts are quite in harmony with the theory, according to which the resemblance must have arisen and increased BY DEGREES. We can recognise this in many cases, for even now the mimetic species show very VARYING DEGREES OF RESEMBLANCE to their immune model. If we compare, for instance, the many different imitators of Danaida chrysippus we find that, with their brownish-yellow ground-colour, and the position and size, and more or less sharp limitation of their clear marginal spots, they have reached very different degrees of nearness to their model. Or compare the female of Elymnias undularis with its model Danaida genutia; there is a general resemblance, but the marking of the Danaida is very roughly imitated in Elymnias.

Another fact that bears out the theory of mimicry is, that even when the resemblance in colour-pattern is very great, the WING-VENATION, which is so constant, and so important in determining the systematic position of butterflies, is never affected by the variation. The pursuers of the butterfly have no time to trouble about entomological intricacies.

I must not pass over a discovery of Poulton's which is of great theoretical importance—that mimetic butterflies may reach the same effect by very different means. ("Journ. Linn. Soc. London (Zool.)", Vol. XXVI. 1898, pages 598-602.) Thus the glass-like transparency of the wing of a certain Ithomiine (Methona) and its Pierine mimic (Dismorphia orise) depends on a diminution in the size of the scales; in the Danaine genus Ituna it is due to the fewness of the scales, and in a third imitator, a moth (Castnia linus var. heliconoides) the glass-like appearance of the wing is due neither to diminution nor to absence of scales, but to their absolute colourlessness and transparency, and to the fact that they stand upright. In another moth mimic (Anthomyza) the arrangement of the transparent scales is normal. Thus it is not some unknown external influence that has brought about the transparency of the wing in these five forms, as has sometimes been supposed. Nor is it a hypothetical INTERNAL evolutionary tendency, for all three vary in a different manner. The cause of this agreement can only lie in selection, which preserves and intensifies in each species the favourable variations that present themselves. The great faithfulness of the copy is astonishing in these cases, for it is not THE WHOLE wing which is transparent; certain markings are black in colour, and these contrast sharply with the glass-like ground. It is obvious that the pursuers of these butterflies must be very sharp-sighted, for otherwise the agreement between the species could never have been pushed so far. The less the enemies see and observe, the more defective must the imitation be, and if they had been blind, no visible resemblance between the species which required protection could ever have arisen.

A seemingly irreconcilable contradiction to the mimicry theory is presented in the following cases, which were known to Bates, who, however, never succeeded in bringing them into line with the principle of mimicry.

In South America there are, as we have already said, many mimics of the immune Ithomiinae (or as Bates called them Heliconidae). Among these there occur not merely species which are edible, and thus require the protection of a disguise, but others which are rejected on account of their unpalatableness. How could the Ithomiine dress have developed in their case, and of what use is it, since the species would in any case be immune? In Eastern Brazil, for instance, there are four butterflies, which bear a most confusing resemblance to one another in colour, marking, and form of wing, and all four are unpalatable to birds. They belong to four different genera and three sub-families, and we have to inquire: Whence came this resemblance and what end does it serve? For a long time no satisfactory answer could be found, but Fritz Muller (In "Kosmos", 1879, page 100.), seventeen years after Bates, offered a solution to the riddle, when he pointed out that young birds could not have an instinctive knowledge of the unpalatableness of the Ithomiines, but must learn by experience which species were edible and which inedible. Thus each young bird must have tasted at least one individual of each inedible species and discovered its unpalatability, before it learnt to avoid, and thus to spare the species. But if the four species resemble each other very closely the bird will regard them all as of the same kind, and avoid them all. Thus there developed a process of selection which resulted in the survival of the Ithomiine-like individuals, and in so great an increase of resemblance between the four species, that they are difficult to distinguish one from another even in a collection. The advantage for the four species, living side by side as they do e.g. in Bahia, lies in the fact that only one individual from the MIMICRY-RING ("inedible association") need be tasted by a young bird, instead of at least four individuals, as would otherwise be the case. As the number of young birds is great, this makes a considerable difference in the ratio of elimination.

These interesting mimicry-rings (trusts), which have much significance for the theory, have been the subject of numerous and careful investigations, and at least their essential features are now fully established. Muller took for granted, without making any investigations, that young birds only learn by experience to distinguish between different kinds of victims. But Lloyd Morgan's ("Habit and Instinct", London, 1896.) experiments with young birds proved that this is really the case, and at the same time furnished an additional argument against the LAMARCKIAN PRINCIPLE.

In addition to the mimicry-rings first observed in South America, others have been described from Tropical India by Moore, and by Poulton and Dixey from Africa, and we may expect to learn many more interesting facts in this connection. Here again the preliminary postulates of the theory are satisfied. And how much more that would lead to the same conclusion might be added!

As in the case of mimicry many species have come to resemble one another through processes of selection, so we know whole classes of phenomena in which plants and animals have become adapted to one another, and have thus been modified to a considerable degree. I refer particularly to the relation between flowers and insects; but as there is an article on "The Biology of Flowers" in this volume, I need not discuss the subject, but will confine myself to pointing out the significance of these remarkable cases for the theory of selection. Darwin has shown that the originally inconspicuous blossoms of the phanerogams were transformed into flowers through the visits of insects, and that, conversely, several large orders of insects have been gradually modified by their association with flowers, especially as regards the parts of their body actively concerned. Bees and butterflies in particular have become what they are through their relation to flowers. In this case again all that is apparently contradictory to the theory can, on closer investigation, be beautifully interpreted in corroboration of it. Selection can give rise only to what is of use to the organism actually concerned, never to what is of use to some other organism, and we must therefore expect to find that in flowers only characters of use to THEMSELVES have arisen, never characters which are of use to insects only, and conversely that in the insects characters useful to them and not merely to the plants would have originated. For a long time it seemed as if an exception to this rule existed in the case of the fertilisation of the yucca blossoms by a little moth, Pronuba yuccasella. This little moth has a sickle-shaped appendage to its mouth-parts which occurs in no other Lepidopteron, and which is used for pushing the yellow pollen into the opening of the pistil, thus fertilising the flower. Thus it appears as if a new structure, which is useful only to the plant, has arisen in the insect. But the difficulty is solved as soon as we learn that the moth lays its eggs in the fruit-buds of the Yucca, and that the larvae, when they emerge, feed on the developing seeds. In effecting the fertilisation of the flower the moth is at the same time making provision for its own offspring, since it is only after fertilisation that the seeds begin to develop. There is thus nothing to prevent our referring this structural adaptation in Pronuba yuccasella to processes of selection, which have gradually transformed the maxillary palps of the female into the sickle-shaped instrument for collecting the pollen, and which have at the same time developed in the insect the instinct to press the pollen into the pistil.

In this domain, then, the theory of selection finds nothing but corroboration, and it would be impossible to substitute for it any other explanation, which, now that the facts are so well known, could be regarded as a serious rival to it. That selection is a factor, and a very powerful factor in the evolution of organisms, can no longer be doubted. Even although we cannot bring forward formal proofs of it IN DETAIL, cannot calculate definitely the size of the variations which present themselves, and their selection-value, cannot, in short, reduce the whole process to a mathematical formula, yet we must assume selection, because it is the only possible explanation applicable to whole classes of phenomena, and because, on the other hand, it is made up of factors which we know can be proved actually to exist, and which, IF they exist, must of logical necessity cooperate in the manner required by the theory. WE MUST ACCEPT IT BECAUSE THE PHENOMENA OF EVOLUTION AND ADAPTATION MUST HAVE A NATURAL BASIS, AND BECAUSE IT IS THE ONLY POSSIBLE EXPLANATION OF THEM. (This has been discussed in many of my earlier works. See for instance "The All-Sufficiency of Natural Selection, a reply to Herbert Spencer", London, 1893.)

Many people are willing to admit that selection explains adaptations, but they maintain that only a part of the phenomena are thus explained, because everything does not depend upon adaptation. They regard adaptation as, so to speak, a special effort on the part of Nature, which she keeps in readiness to meet particularly difficult claims of the external world on organisms. But if we look at the matter more carefully we shall find that adaptations are by no means exceptional, but that they are present everywhere in such enormous numbers, that it would be difficult in regard to any structure whatever, to prove that adaptation had NOT played a part in its evolution.

How often has the senseless objection been urged against selection that it can create nothing, it can only reject. It is true that it cannot create either the living substance or the variations of it; both must be given. But in rejecting one thing it preserves another, intensifies it, combines it, and in this way CREATES what is new. EVERYTHING in organisms depends on adaptation; that is to say, everything must be admitted through the narrow door of selection, otherwise it can take no part in the building up of the whole. But, it is asked, what of the direct effect of external conditions, temperature, nutrition, climate and the like? Undoubtedly these can give rise to variations, but they too must pass through the door of selection, and if they cannot do this they are rejected, eliminated from the constitution of the species.

It may, perhaps, be objected that such external influences are often of a compelling power, and that every animal MUST submit to them, and that thus selection has no choice and can neither select nor reject. There may be such cases; let us assume for instance that the effect of the cold of the Arctic regions was to make all the mammals become black; the result would be that they would all be eliminated by selection, and that no mammals would be able to live there at all. But in most cases a certain percentage of animals resists these strong influences, and thus selection secures a foothold on which to work, eliminating the unfavourable variation, and establishing a useful colouring, consistent with what is required for the maintenance of the species.

Everything depends upon adaptation! We have spoken much of adaptation in colouring, in connection with the examples brought into prominence by Darwin, because these are conspicuous, easily verified, and at the same time convincing for the theory of selection. But is it only desert and polar animals whose colouring is determined through adaptation? Or the leaf-butterflies, and the mimetic species, or the terrifying markings, and "warning-colours" and a thousand other kinds of sympathetic colouring? It is, indeed, never the colouring alone which makes up the adaptation; the structure of the animal plays a part, often a very essential part, in the protective disguise, and thus MANY variations may cooperate towards ONE common end. And it is to be noted that it is by no means only external parts that are changed; internal parts are ALWAYS modified at the same time—for instance, the delicate elements of the nervous system on which depend the INSTINCT of the insect to hold its wings, when at rest, in a perfectly definite position, which, in the leaf-butterfly, has the effect of bringing the two pieces on which the marking occurs on the anterior and posterior wing into the same direction, and thus displaying as a whole the fine curve of the midrib on the seeming leaf. But the wing-holding instinct is not regulated in the same way in all leaf-butterflies; even our indigenous species of Vanessa, with their protective ground-colouring, have quite a distinctive way of holding their wings so that the greater part of the anterior wing is covered by the posterior when the butterfly is at rest. But the protective colouring appears on the posterior wing and on the tip of the anterior, TO PRECISELY THE DISTANCE TO WHICH IT IS LEFT UNCOVERED. This occurs, as Standfuss has shown, in different degree in our two most nearly allied species, the uncovered portion being smaller in V. urticae than in V. polychloros. In this case, as in most leaf-butterflies, the holding of the wing was probably the primary character; only after that was thoroughly established did the protective marking develop. In any case, the instinctive manner of holding the wings is associated with the protective colouring, and must remain as it is if the latter is to be effective. How greatly instincts may change, that is to say, may be adapted, is shown by the case of the Noctuid "shark" moth, Xylina vetusta. This form bears a most deceptive resemblance to a piece of rotten wood, and the appearance is greatly increased by the modification of the innate impulse to flight common to so many animals, which has here been transformed into an almost contrary instinct. This moth does not fly away from danger, but "feigns death," that is, it draws antennae, legs and wings close to the body, and remains perfectly motionless. It may be touched, picked up, and thrown down again, and still it does not move. This remarkable instinct must surely have developed simultaneously with the wood-colouring; at all events, both cooperating variations are now present, and prove that both the external and the most minute internal structure have undergone a process of adaptation.

The case is the same with all structural variations of animal parts, which are not absolutely insignificant. When the insects acquired wings they must also have acquired the mechanism with which to move them—the musculature, and the nervous apparatus necessary for its automatic regulation. All instincts depend upon compound reflex mechanisms and are just as indispensable as the parts they have to set in motion, and all may have arisen through processes of selection if the reasons which I have elsewhere given for this view are correct. ("The Evolution Theory", London, 1904, page 144.)

Thus there is no lack of adaptations within the organism, and particularly in its most important and complicated parts, so that we may say that there is no actively functional organ that has not undergone a process of adaptation relative to its function and the requirements of the organism. Not only is every gland structurally adapted, down to the very minutest histological details, to its function, but the function is equally minutely adapted to the needs of the body. Every cell in the mucous lining of the intestine is exactly regulated in its relation to the different nutritive substances, and behaves in quite a different way towards the fats, and towards nitrogenous substances, or peptones.

I have elsewhere called attention to the many adaptations of the whale to the surrounding medium, and have pointed out—what has long been known, but is not universally admitted, even now—that in it a great number of important organs have been transformed in adaptation to the peculiar conditions of aquatic life, although the ancestors of the whale must have lived, like other hair-covered mammals, on land. I cited a number of these transformations—the fish-like form of the body, the hairlessness of the skin, the transformation of the fore-limbs to fins, the disappearance of the hind-limbs and the development of a tail fin, the layer of blubber under the skin, which affords the protection from cold necessary to a warm-blooded animal, the disappearance of the ear-muscles and the auditory passages, the displacement of the external nares to the forehead for the greater security of the breathing-hole during the brief appearance at the surface, and certain remarkable changes in the respiratory and circulatory organs which enable the animal to remain for a long time under water. I might have added many more, for the list of adaptations in the whale to aquatic life is by no means exhausted; they are found in the histological structure and in the minutest combinations in the nervous system. For it is obvious that a tail-fin must be used in quite a different way from a tail, which serves as a fly-brush in hoofed animals, or as an aid to springing in the kangaroo or as a climbing organ; it will require quite different reflex-mechanisms and nerve-combinations in the motor centres.

I used this example in order to show how unnecessary it is to assume a special internal evolutionary power for the phylogenesis of species, for this whole order of whales is, so to speak, MADE UP OF ADAPTATIONS; it deviates in many essential respects from the usual mammalian type, and all the deviations are adaptations to aquatic life. But if precisely the most essential features of the organisation thus depend upon adaptation, what is left for a phyletic force to do, since it is these essential features of the structure it would have to determine? There are few people now who believe in a phyletic evolutionary power, which is not made up of the forces known to us—adaptation and heredity—but the conviction that EVERY part of an organism depends upon adaptation has not yet gained a firm footing. Nevertheless, I must continue to regard this conception as the correct one, as I have long done.

I may be permitted one more example. The feather of a bird is a marvellous structure, and no one will deny that as a whole it depends upon adaptation. But what part of it DOES NOT depend upon adaptation? The hollow quill, the shaft with its hard, thin, light cortex, and the spongy substance within it, its square section compared with the round section of the quill, the flat barbs, their short, hooked barbules which, in the flight-feathers, hook into one another with just sufficient firmness to resist the pressure of the air at each wing-beat, the lightness and firmness of the whole apparatus, the elasticity of the vane, and so on. And yet all this belongs to an organ which is only passively functional, and therefore can have nothing to do with the LAMARCKIAN PRINCIPLE. Nor can the feather have arisen through some magical effect of temperature, moisture, electricity, or specific nutrition, and thus selection is again our only anchor of safety.

But—it will be objected—the substance of which the feather consists, this peculiar kind of horny substance, did not first arise through selection in the course of the evolution of the birds, for it formed the covering of the scales of their reptilian ancestors. It is quite true that a similar substance covered the scales of the Reptiles, but why should it not have arisen among them through selection? Or in what other way could it have arisen, since scales are also passively useful parts? It is true that if we are only to call adaptation what has been acquired by the species we happen to be considering, there would remain a great deal that could not be referred to selection; but we are postulating an evolution which has stretched back through aeons, and in the course of which innumerable adaptations took place, which had not merely ephemeral persistence in a genus, a family or a class, but which was continued into whole Phyla of animals, with continual fresh adaptations to the special conditions of each species, family, or class, yet with persistence of the fundamental elements. Thus the feather, once acquired, persisted in all birds, and the vertebral column, once gained by adaptation in the lowest forms, has persisted in all the Vertebrates, from Amphioxus upwards, although with constant readaptation to the conditions of each particular group. Thus everything we can see in animals is adaptation, whether of to-day, or of yesterday, or of ages long gone by; every kind of cell, whether glandular, muscular, nervous, epidermic, or skeletal, is adapted to absolutely definite and specific functions, and every organ which is composed of these different kinds of cells contains them in the proper proportions, and in the particular arrangement which best serves the function of the organ; it is thus adapted to its function.

All parts of the organism are tuned to one another, that is, THEY ARE ADAPTED TO ONE ANOTHER, and in the same way THE ORGANISM AS A WHOLE IS ADAPTED TO THE CONDITIONS OF ITS LIFE, AND IT IS SO AT EVERY STAGE OF ITS EVOLUTION.

But all adaptations CAN be referred to selection; the only point that remains doubtful is whether they all MUST be referred to it.

However that may be, whether the LAMARCKIAN PRINCIPLE is a factor that has cooperated with selection in evolution, or whether it is altogether fallacious, the fact remains, that selection is the cause of a great part of the phyletic evolution of organisms on our earth. Those who agree with me in rejecting the LAMARCKIAN PRINCIPLE will regard selection as the only GUIDING factor in evolution, which creates what is new out of the transmissible variations, by ordering and arranging these, selecting them in relation to their number and size, as the architect does his building-stones so that a particular style must result. ("Variation under Domestication", 1875 II. pages 426, 427.) But the building-stones themselves, the variations, have their basis in the influences which cause variation in those vital units which are handed on from one generation to another, whether, taken together they form the WHOLE organism, as in Bacteria and other low forms of life, or only a germ-substance, as in unicellular and multicellular organisms. (The Author and Editor are indebted to Professor Poulton for kindly assisting in the revision of the proof of this Essay.)



IV. VARIATION. By HUGO DE VRIES.

Professor of Botany in the University of Amsterdam.

I. DIFFERENT KINDS OF VARIABILITY.

Before Darwin, little was known concerning the phenomena of variability. The fact, that hardly two leaves on a tree were exactly the same, could not escape observation: small deviations of the same kind were met with everywhere, among individuals as well as among the organs of the same plant. Larger aberrations, spoken of as monstrosities, were for a long time regarded as lying outside the range of ordinary phenomena. A special branch of inquiry, that of Teratology, was devoted to them, but it constituted a science by itself, sometimes connected with morphology, but having scarcely any bearing on the processes of evolution and heredity.

Darwin was the first to take a broad survey of the whole range of variations in the animal and vegetable kingdoms. His theory of Natural Selection is based on the fact of variability. In order that this foundation should be as strong as possible he collected all the facts, scattered in the literature of his time, and tried to arrange them in a scientific way. He succeeded in showing that variations may be grouped along a line of almost continuous gradations, beginning with simple differences in size and ending with monstrosities. He was struck by the fact that, as a rule, the smaller the deviations, the more frequently they appear, very abrupt breaks in characters being of rare occurrence.

Among these numerous degrees of variability Darwin was always on the look out for those which might, with the greatest probability, be considered as affording material for natural selection to act upon in the development of new species. Neither of the extremes complied with his conceptions. He often pointed out, that there are a good many small fluctuations, which in this respect must be absolutely useless. On the other hand, he strongly combated the belief, that great changes would be necessary to explain the origin of species. Some authors had propounded the idea that highly adapted organs, e.g. the wings of a bird, could not have been developed in any other way than by a comparatively sudden modification of a well defined and important kind. Such a conception would allow of great breaks or discontinuity in the evolution of highly differentiated animals and plants, shortening the time for the evolution of the whole organic kingdom and getting over numerous difficulties inherent in the theory of slow and gradual progress. It would, moreover, account for the genetic relation of the larger groups of both animals and plants. It would, in a word, undoubtedly afford an easy means of simplifying the problem of descent with modification.

Darwin, however, considered such hypotheses as hardly belonging to the domain of science; they belong, he said, to the realm of miracles. That species have a capacity for change is admitted by all evolutionists; but there is no need to invoke modifications other than those represented by ordinary variability. It is well known that in artificial selection this tendency to vary has given rise to numerous distinct races, and there is no reason for denying that it can do the same in nature, by the aid of natural selection. On both lines an advance may be expected with equal probability.

His main argument, however, is that the most striking and most highly adapted modifications may be acquired by successive variations. Each of these may be slight, and they may affect different organs, gradually adapting them to the same purpose. The direction of the adaptations will be determined by the needs in the struggle for life, and natural selection will simply exclude all such changes as occur on opposite or deviating lines. In this way, it is not variability itself which is called upon to explain beautiful adaptations, but it is quite sufficient to suppose that natural selection has operated during long periods in the same way. Eventually, all the acquired characters, being transmitted together, would appear to us, as if they had all been simultaneously developed.

Correlations must play a large part in such special evolutions: when one part is modified, so will be other parts. The distribution of nourishment will come in as one of the causes, the reactions of different organs to the same external influences as another. But no doubt the more effective cause is that of the internal correlations, which, however, are still but dimly understood. Darwin repeatedly laid great stress on this view, although a definite proof of its correctness could not be given in his time. Such proof requires the direct observation of a mutation, and it should be stated here that even the first observations made in this direction have clearly confirmed Darwin's ideas. The new evening primroses which have sprung in my garden from the old form of Oenothera Lamarckiana, and which have evidently been derived from it, in each case, by a single mutation, do not differ from their parent species in one character only, but in almost all their organs and qualities. Oenothera gigas, for example, has stouter stems and denser foliage; the leaves are larger and broader; its thick flower-buds produce gigantic flowers, but only small fruits with large seeds. Correlative changes of this kind are seen in all my new forms, and they lend support to the view that in the gradual development of highly adapted structures, analogous correlations may have played a large part. They easily explain large deviations from an original type, without requiring the assumption of too many steps.

Monstrosities, as their name implies, are widely different in character from natural species; they cannot, therefore, be adduced as evidence in the investigation of the origin of species. There is no doubt that they may have much in common as regards their manner of origin, and that the origin of species, once understood, may lead to a better understanding of the monstrosities. But the reverse is not true, at least not as regards the main lines of development. Here, it is clear, monstrosities cannot have played a part of any significance.

Reversions, or atavistic changes, would seem to give a better support to the theory of descent through modifications. These have been of paramount importance on many lines of evolution of the animal as well as of the vegetable kingdom. It is often assumed that monocotyledons are descended from some lower group of dicotyledons, probably allied to that which includes the buttercup family. On this view the monocotyledons must be assumed to have lost the cambium and all its influence on secondary growth, the differentiation of the flower into calyx and corolla, the second cotyledon or seed-leaf and several other characters. Losses of characters such as these may have been the result of abrupt changes, but this does not prove that the characters themselves have been produced with equal suddenness. On the contrary, Darwin shows very convincingly that a modification may well be developed by a series of steps, and afterwards suddenly disappear. Many monstrosities, such as those represented by twisted stems, furnish direct proofs in support of this view, since they are produced by the loss of one character and this loss implies secondary changes in a large number of other organs and qualities.

Darwin criticises in detail the hypothesis of great and abrupt changes and comes to the conclusion that it does not give even a shadow of an explanation of the origin of species. It is as improbable as it is unnecessary.

Sports and spontaneous variations must now be considered. It is well known that they have produced a large number of fine horticultural varieties. The cut-leaved maple and many other trees and shrubs with split leaves are known to have been produced at a single step; this is true in the case of the single-leaf strawberry plant and of the laciniate variety of the greater celandine: many white flowers, white or yellow berries and numerous other forms had a similar origin. But changes such as these do not come under the head of adaptations, as they consist for the most part in the loss of some quality or organ belonging to the species from which they were derived. Darwin thinks it impossible to attribute to this cause the innumerable structures, which are so well adapted to the habits of life of each species. At the present time we should say that such adaptations require progressive modifications, which are additions to the stock of qualities already possessed by the ancestors, and cannot, therefore, be explained on the ground of a supposed analogy with sports, which are for the most part of a retrogressive nature.

Excluding all these more or less sudden changes, there remains a long series of gradations of variability, but all of these are not assumed by Darwin to be equally fit for the production of new species. In the first place, he disregards all mere temporary variations, such as size, albinism, etc.; further, he points out that very many species have almost certainly been produced by steps, not greater, and probably not very much smaller, than those separating closely related varieties. For varieties are only small species. Next comes the question of polymorphic species: their occurrence seems to have been a source of much doubt and difficulty in Darwin's mind, although at present it forms one of the main supports of the prevailing explanation of the origin of new species. Darwin simply states that this kind of variability seems to be of a peculiar nature; since polymorphic species are now in a stable condition their occurrence gives no clue as to the mode of origin of new species. Polymorphic species are the expression of the result of previous variability acting on a large scale; but they now simply consist of more or less numerous elementary species, which, as far as we know, do not at present exhibit a larger degree of variability than any other more uniform species. The vernal whitlow-grass (Draba verna) and the wild pansy are the best known examples; both have spread over almost the whole of Europe and are split up into hundreds of elementary forms. These sub-species show no signs of any extraordinary degree of variability, when cultivated under conditions necessary for the exclusion of inter-crossing. Hooker has shown, in the case of some ferns distributed over still wider areas, that the extinction of some of the intermediate forms in such groups would suffice to justify the elevation of the remaining types to the rank of distinct species. Polymorphic species may now be regarded as the link which unites ordinary variability with the historical production of species. But it does not appear that they had this significance for Darwin; and, in fact, they exhibit no phenomena which could explain the processes by which one species has been derived from another. By thus narrowing the limits of the species-producing variability Darwin was led to regard small deviations as the source from which natural selection derives material upon which to act. But even these are not all of the same type, and Darwin was well aware of the fact.

It should here be pointed out that in order to be selected, a change must first have been produced. This proposition, which now seems self-evident, has, however, been a source of much difference of opinion among Darwin's followers. The opinion that natural selection produces changes in useful directions has prevailed for a long time. In other words, it was assumed that natural selection, by the simple means of singling out, could induce small and useful changes to increase and to reach any desired degree of deviation from the original type. In my opinion this view was never actually held by Darwin. It is in contradiction with the acknowledged aim of all his work,—the explanation of the origin of species by means of natural forces and phenomena only. Natural selection acts as a sieve; it does not single out the best variations, but it simply destroys the larger number of those which are, from some cause or another, unfit for their present environment. In this way it keeps the strains up to the required standard, and, in special circumstances, may even improve them.

Returning to the variations which afford the material for the sieving-action of natural selection, we may distinguish two main kinds. It is true that the distinction between these was not clear at the time of Darwin, and that he was unable to draw a sharp line between them. Nevertheless, in many cases, he was able to separate them, and he often discussed the question which of the two would be the real source of the differentiation of species. Certain variations constantly occur, especially such as are connected with size, weight, colour, etc. They are usually too small for natural selection to act upon, having hardly any influence in the struggle for life: others are more rare, occurring only from time to time, perhaps once or twice in a century, perhaps even only once in a thousand years. Moreover, these are of another type, not simply affecting size, number or weight, but bringing about something new, which may be useful or not. Whenever the variation is useful natural selection will take hold of it and preserve it; in other cases the variation may either persist or disappear.

In his criticism of miscellaneous objections brought forward against the theory of natural selection after the publication of the first edition of "The Origin of Species", Darwin stated his view on this point very clearly:—"The doctrine of natural selection or the survival of the fittest, which implies that when variations or individual differences of a beneficial nature happen to arise, these will be preserved." ("Origin of Species" (6th edition), page 169, 1882.) In this sentence the words "HAPPEN TO ARISE" appear to me of prominent significance. They are evidently due to the same general conception which prevailed in Darwin's Pangenesis hypothesis. (Cf. de Vries, "Intracellulare Pangenesis", page 73, Jena, 1889, and "Die Mutationstheorie", I. page 63. Leipzig, 1901.)

A distinction is indicated between ordinary fluctuations which are always present, and such variations as "happen to arise" from time to time. ((I think it right to point out that the interpretation of this passage from the "Origin" by Professor de Vries is not accepted as correct either by Mr Francis Darwin or by myself. We do not believe that Darwin intended to draw any distinction between TWO TYPES of variation; the words "when variations or individual differences of a beneficial nature happen to arise" are not in our opinion meant to imply a distinction between ordinary fluctuations and variations which "happen to arise," but we believe that "or" is here used in the sense of ALIAS. With the permission of Professor de Vries, the following extract is quoted from a letter in which he replied to the objection raised to his reading of the passage in question:

"As to your remarks on the passage on page 6, I agree that it is now impossible to see clearly how far Darwin went in his distinction of the different kinds of variability. Distinctions were only dimly guessed at by him. But in our endeavour to arrive at a true conception of his view I think that the chapter on Pangenesis should be our leading guide, and that we should try to interpret the more difficult passages by that chapter. A careful and often repeated study of the Pangenesis hypothesis has convinced me that Darwin, when he wrote that chapter, was well aware that ordinary variability has nothing to do with evolution, but that other kinds of variation were necessary. In some chapters he comes nearer to a clear distinction than in others. To my mind the expression 'happen to arise' is the sharpest indication of his inclining in this direction. I am quite convinced that numerous expressions in his book become much clearer when looked at in this way."

The statement in this passage that "Darwin was well aware that ordinary variability has nothing to do with evolution, but that other kinds of variation were necessary" is contradicted by many passages in the "Origin". A.C.S.)) The latter afford the material for natural selection to act upon on the broad lines of organic development, but the first do not. Fortuitous variations are the species-producing kind, which the theory requires; continuous fluctuations constitute, in this respect, a useless type.

Of late, the study of variability has returned to the recognition of this distinction. Darwin's variations, which from time to time happen to arise, are MUTATIONS, the opposite type being commonly designed fluctuations. A large mass of facts, collected during the last few decades, has confirmed this view, which in Darwin's time could only be expressed with much reserve, and everyone knows that Darwin was always very careful in statements of this kind.

From the same chapter I may here cite the following paragraph: "Thus as I am inclined to believe, morphological differences,... such as the arrangement of the leaves, the divisions of the flower or of the ovarium, the position of the ovules, etc.—first appeared in many cases as fluctuating variations, which sooner or later became constant through the nature of the organism and of the surrounding conditions... but NOT THROUGH NATURAL SELECTION (The italics are mine (H. de V.).); for as these morphological characters do not affect the welfare of the species, any slight deviation in them could not have been governed or accumulated through this latter agency." ("Origin of Species" (6th edition), page 176.) We thus see that in Darwin's opinion, all small variations had not the same importance. In favourable circumstances some could become constant, but others could not.

Since the appearance of the first edition of "The Origin of Species" fluctuating variability has been thoroughly studied by Quetelet. He discovered the law, which governs all phenomena of organic life falling under this head. It is a very simple law, and states that individual variations follow the laws of probability. He proved it, in the first place, for the size of the human body, using the measurements published for Belgian recruits; he then extended it to various other measurements of parts of the body, and finally concluded that it must be of universal validity for all organic beings. It must hold true for all characters in man, physical as well as intellectual and moral qualities; it must hold true for the plant kingdom as well as for the animal kingdom; in short, it must include the whole living world.

Quetelet's law may be most easily studied in those cases where the variability relates to measure, number and weight, and a vast number of facts have since confirmed its exactness and its validity for all kinds of organisms, organs and qualities. But if we examine it more closely, we find that it includes just those minute variations, which, as Darwin repeatedly pointed out, have often no significance for the origin of species. In the phenomena, described by Quetelet's law nothing "happens to arise"; all is governed by the common law, which states that small deviations from the mean type are frequent, but that larger aberrations are rare, the rarer as they are larger. Any degree of variation will be found to occur, if only the number of individuals studied is large enough: it is even possible to calculate before hand, how many specimens must be compared in order to find a previously fixed degree of deviation.

The variations, which from time to time happen to appear, are evidently not governed by this law. They cannot, as yet, be produced at will: no sowings of thousands or even of millions of plants will induce them, although by such means the chance of their occurring will obviously be increased. But they are known to occur, and to occur suddenly and abruptly. They have been observed especially in horticulture, where they are ranged in the large and ill-defined group called sports. Korschinsky has collected all the evidence which horticultural literature affords on this point. (S. Korschinsky, "Heterogenesis und Evolution", "Flora", Vol. LXXXIX. pages 240-363, 1901.) Several cases of the first appearance of a horticultural novelty have been recorded: this has always happened in the same way; it appeared suddenly and unexpectedly without any definite relation to previously existing variability. Dwarf types are one of the commonest and most favourite varieties of flowering plants; they are not originated by a repeated selection of the smallest specimens, but appear at once, without intermediates and without any previous indication. In many instances they are only about half the height of the original type, thus constituting obvious novelties. So it is in other cases described by Korschinsky: these sports or mutations are now recognised to be the main source of varieties of horticultural plants.

As already stated, I do not pretend that the production of horticultural novelties is the prototype of the origin of new species in nature. I assume that they are, as a rule, derived from the parent species by the loss of some organ or quality, whereas the main lines of the evolution of the animal and vegetable kingdom are of course determined by progressive changes. Darwin himself has often pointed out this difference. But the saltatory origin of horticultural novelties is as yet the simplest parallel for natural mutations, since it relates to forms and phenomena, best known to the general student of evolution.

The point which I wish to insist upon is this. The difference between small and ever present fluctuations and rare and more sudden variations was clear to Darwin, although the facts known at his time were too meagre to enable a sharp line to be drawn between these two great classes of variability. Since Darwin's time evidence, which proves the correctness of his view, has accumulated with increasing rapidity. Fluctuations constitute one type; they are never absent and follow the law of chance, but they do not afford the material from which to build new species. Mutations, on the other hand, only happen to occur from time to time. They do not necessarily produce greater changes than fluctuations, but such as may become, or rather are from their very nature, constant. It is this constancy which is the mark of specific characters, and on this basis every new specific character may be assumed to have arisen by mutation.

Some authors have tried to show that the theory of mutation is opposed to Darwin's views. But this is erroneous. On the contrary, it is in fullest harmony with the great principle laid down by Darwin. In order to be acted upon by that complex of environmental forces, which Darwin has called natural selection, the changes must obviously first be there. The manner in which they are produced is of secondary importance and has hardly any bearing on the theory of descent with modification. ("Life and Letters" II. 125.)

A critical survey of all the facts of variability of plants in nature as well as under cultivation has led me to the conviction, that Darwin was right in stating that those rare beneficial variations, which from time to time happen to arise,—the now so-called mutations—are the real source of progress in the whole realm of the organic world.

II. EXTERNAL AND INTERNAL CAUSES OF VARIABILITY.

All phenomena of animal and plant life are governed by two sets of causes; one of these is external, the other internal. As a rule the internal causes determine the nature of a phenomenon—what an organism can do and what it cannot do. The external causes, on the other hand, decide when a certain variation will occur, and to what extent its features may be developed.

As a very clear and wholly typical instance I cite the cocks-combs (Celosia). This race is distinguished from allied forms by its faculty of producing the well-known broad and much twisted combs. Every single individual possesses this power, but all individuals do not exhibit it in its most complete form. In some cases this faculty may not be exhibited at the top of the main stem, although developed in lateral branches: in others it begins too late for full development. Much depends upon nourishment and cultivation, but almost always the horticulturist has to single out the best individuals and to reject those which do not come up to the standard.

The internal causes are of a historical nature. The external ones may be defined as nourishment and environment. In some cases nutrition is the main factor, as, for instance, in fluctuating variability, but in natural selection environment usually plays the larger part.

The internal or historical causes are constant during the life-time of a species, using the term species in its most limited sense, as designating the so-called elementary species or the units out of which the ordinary species are built up. These historical causes are simply the specific characters, since in the origin of a species one or more of these must have been changed, thus producing the characters of the new type. These changes must, of course, also be due partly to internal and partly to external causes.

In contrast to these changes of the internal causes, the ordinary variability which is exhibited during the life-time of a species is called fluctuating variability. The name mutations or mutating variability is then given to the changes in the specific characters. It is desirable to consider these two main divisions of variability separately.

In the case of fluctuations the internal causes, as well as the external ones, are often apparent. The specific characters may be designated as the mean about which the observed forms vary. Almost every character may be developed to a greater or a less degree, but the variations of the single characters producing a small deviation from the mean are usually the commonest. The limits of these fluctuations may be called wide or narrow, according to the way we look at them, but in numerous cases the extreme on the favoured side hardly surpasses double the value of that on the other side. The degree of this development, for every individual and for every organ, is dependent mainly on nutrition. Better nourishment or an increased supply of food produces a higher development; only it is not always easy to determine which direction is the fuller and which is the poorer one. The differences among individuals grown from different seeds are described as examples of individual variability, but those which may be observed on the same plant, or on cuttings, bulbs or roots derived from one individual are referred to as cases of partial variability. Partial variability, therefore, determines the differences among the flowers, fruits, leaves or branches of one individual: in the main, it follows the same laws as individual variability, but the position of a branch on a plant also determines its strength, and the part it may take in the nourishment of the whole. Composite flowers and umbels therefore have, as a rule, fewer rays on weak branches than on the strong main ones. The number of carpels in the fruits of poppies becomes very small on the weak lateral branches, which are produced towards the autumn, as well as on crowded, and therefore on weakened individuals. Double flowers follow the same rule, and numerous other instances could easily be adduced.

Mutating variability occurs along three main lines. Either a character may disappear, or, as we now say, become latent; or a latent character may reappear, reproducing thereby a character which was once prominent in more or less remote ancestors. The third and most interesting case is that of the production of quite new characters which never existed in the ancestors. Upon this progressive mutability the main development of the animal and vegetable kingdom evidently depends. In contrast to this, the two other cases are called retrogressive and degressive mutability. In nature retrogressive mutability plays a large part; in agriculture and in horticulture it gives rise to numerous varieties, which have in the past been preserved, either on account of their usefulness or beauty, or simply as fancy-types. In fact the possession of numbers of varieties may be considered as the main character of domesticated animals and cultivated plants.

In the case of retrogressive and degressive mutability the internal cause is at once apparent, for it is this which causes the disappearance or reappearance of some character. With progressive mutations the case is not so simple, since the new character must first be produced and then displayed. These two processes are theoretically different, but they may occur together or after long intervals. The production of the new character I call premutation, and the displaying mutation. Both of course must have their external as well as their internal causes, as I have repeatedly pointed out in my work on the Mutation Theory. ("Die Mutationstheorie", 2 vols., Leipzig, 1901.)

It is probable that nutrition plays as important a part among the external causes of mutability as it does among those of fluctuating variability. Observations in support of this view, however, are too scanty to allow of a definite judgment. Darwin assumed an accumulative influence of external causes in the case of the production of new varieties or species. The accumulation might be limited to the life-time of a single individual, or embrace that of two or more generations. In the end a degree of instability in the equilibrium of one or more characters might be attained, great enough for a character to give way under a small shock produced by changed conditions of life. The character would then be thrown over from the old state of equilibrium into a new one.

Characters which happen to be in this state of unstable equilibrium are called mutable. They may be either latent or active, being in the former case derived from old active ones or produced as new ones (by the process, designated premutation). They may be inherited in this mutable condition during a long series of generations. I have shown that in the case of the evening primrose of Lamarck this state of mutability must have existed for at least half a century, for this species was introduced from Texas into England about the year 1860, and since then all the strains derived from its first distribution over the several countries of Europe show the same phenomena in producing new forms. The production of the dwarf evening primrose, or Oenothera nanella, is assumed to be due to one of the factors, which determines the tall stature of the parent form, becoming latent; this would, therefore, afford an example of retrogressive mutation. Most of the other types of my new mutants, on the other hand, seem to be due to progressive mutability.

The external causes of this curious period of mutability are as yet wholly unknown and can hardly be guessed at, since the origin of the Oenothera Lamarckiana is veiled in mystery. The seeds, introduced into England about 1860, were said to have come from Texas, but whether from wild or from cultivated plants we do not know. Nor has the species been recorded as having been observed in the wild condition. This, however, is nothing peculiar. The European types of Oenothera biennis and O. muricata are in the same condition. The first is said to have been introduced from Virginia, and the second from Canada, but both probably from plants cultivated in the gardens of these countries. Whether the same elementary species are still growing on those spots is unknown, mainly because the different sub-species of the species mentioned have not been systematically studied and distinguished.

The origin of new species, which is in part the effect of mutability, is, however, due mainly to natural selection. Mutability provides the new characters and new elementary species. Natural selection, on the other hand, decides what is to live and what to die. Mutability seems to be free, and not restricted to previously determined lines. Selection, however, may take place along the same main lines in the course of long geological epochs, thus directing the development of large branches of the animal and vegetable kingdom. In natural selection it is evident that nutrition and environment are the main factors. But it is probable that, while nutrition may be one of the main causes of mutability, environment may play the chief part in the decisions ascribed to natural selection. Relations to neighbouring plants and to injurious or useful animals, have been considered the most important determining factors ever since the time when Darwin pointed out their prevailing influence.

From this discussion of the main causes of variability we may derive the proposition that the study of every phenomenon in the field of heredity, of variability, and of the origin of new species will have to be considered from two standpoints; on one hand we have the internal causes, on the other the external ones. Sometimes the first are more easily detected, in other cases the latter are more accessible to investigation. But the complete elucidation of any phenomenon of life must always combine the study of the influence of internal with that of external causes.

III. POLYMORPHIC VARIABILITY IN CEREALS.

One of the propositions of Darwin's theory of the struggle for life maintains that the largest amount of life can be supported on any area, by great diversification or divergence in the structure and constitution of its inhabitants. Every meadow and every forest affords a proof of this thesis. The numerical proportion of the different species of the flora is always changing according to external influences. Thus, in a given meadow, some species will flower abundantly in one year and then almost disappear, until, after a series of years, circumstances allow them again to multiply rapidly. Other species, which have taken their places, will then become rare. It follows from this principle, that notwithstanding the constantly changing conditions, a suitable selection from the constituents of a meadow will ensure a continued high production. But, although the principle is quite clear, artificial selection has, as yet, done very little towards reaching a really high standard.

The same holds good for cereals. In ordinary circumstances a field will give a greater yield, if the crop grown consists of a number of sufficiently differing types. Hence it happens that almost all older varieties of wheat are mixtures of more or less diverging forms. In the same variety the numerical composition will vary from year to year, and in oats this may, in bad years, go so far as to destroy more than half of the harvest, the wind-oats (Avena fatua), which scatter their grain to the winds as soon as it ripens, increasing so rapidly that they assume the dominant place. A severe winter, a cold spring and other extreme conditions of life will destroy one form more completely than another, and it is evident that great changes in the numerical composition of the mixture may thus be brought about.

This mixed condition of the common varieties of cereals was well known to Darwin. For him it constituted one of the many types of variability. It is of that peculiar nature to which, in describing other groups, he applies the term polymorphy. It does not imply that the single constituents of the varieties are at present really changing their characters. On the other hand, it does not exclude the possibility of such changes. It simply states that observation shows the existence of different forms; how these have originated is a question which it does not deal with. In his well-known discussion of the variability of cereals, Darwin is mainly concerned with the question, whether under cultivation they have undergone great changes or only small ones. The decision ultimately depends on the question, how many forms have originally been taken into cultivation. Assuming five or six initial species, the variability must be assumed to have been very large, but on the assumption that there were between ten and fifteen types, the necessary range of variability is obviously much smaller. But in regard to this point, we are of course entirely without historical data.

Few of the varieties of wheat show conspicuous differences, although their number is great. If we compare the differentiating characters of the smaller types of cereals with those of ordinary wild species, even within the same genus or family, they are obviously much less marked. All these small characters, however, are strictly inherited, and this fact makes it very probable that the less obvious constituents of the mixtures in ordinary fields must be constant and pure as long as they do not intercross. Natural crossing is in most cereals a phenomenon of rare occurrence, common enough to admit of the production of all possible hybrid combinations, but requiring the lapse of a long series of years to reach its full effect.

Darwin laid great stress on this high amount of variability in the plants of the same variety, and illustrated it by the experience of Colonel Le Couteur ("On the Varieties, Properties, and Classification of Wheat", Jersey, 1837.) on his farm on the isle of Jersey, who cultivated upwards of 150 varieties of wheat, which he claimed were as pure as those of any other agriculturalist. But Professor La Gasca of Madrid, who visited him, drew attention to aberrant ears, and pointed out, that some of them might be better yielders than the majority of plants in the crop, whilst others might be poor types. Thence he concluded that the isolation of the better ones might be a means of increasing his crops. Le Couteur seems to have considered the constancy of such smaller types after isolation as absolutely probable, since he did not even discuss the possibility of their being variable or of their yielding a changeable or mixed progeny. This curious fact proves that he considered the types, discovered in his fields by La Gasca to be of the same kind as his other varieties, which until that time he had relied upon as being pure and uniform. Thus we see, that for him, the variability of cereals was what we now call polymorphy. He looked through his fields for useful aberrations, and collected twenty-three new types of wheat. He was, moreover, clear about one point, which, on being rediscovered after half a century, has become the starting-point for the new Swedish principle of selecting agricultural plants. It was the principle of single-ear sowing, instead of mixing the grains of all the selected ears together. By sowing each ear on a separate plot he intended not only to multiply them, but also to compare their value. This comparison ultimately led him to the choice of some few valuable sorts, one of which, the "Bellevue de Talavera," still holds its place among the prominent sorts of wheat cultivated in France. This variety seems to be really a uniform type, a quality very useful under favourable conditions of cultivation, but which seems to have destroyed its capacity for further improvement by selection.

The principle of single-ear sowing, with a view to obtain pure and uniform strains without further selection, has, until a few years ago, been almost entirely lost sight of. Only a very few agriculturists have applied it: among these are Patrick Shirreff ("Die Verbesserung der Getreide-Arten", translated by R. Hesse, Halle, 1880.) in Scotland and Willet M. Hays ("Wheat, varieties, breeding, cultivation", Univ. Minnesota, Agricultural Experimental Station, Bull. no. 62, 1899.) in Minnesota. Patrick Shirreff observed the fact, that in large fields of cereals, single plants may from time to time be found with larger ears, which justify the expectation of a far greater yield. In the course of about twenty-five years he isolated in this way two varieties of wheat and two of oats. He simply multiplied them as fast as possible, without any selection, and put them on the market.

Hays was struck by the fact that the yield of wheat in Minnesota was far beneath that in the neighbouring States. The local varieties were Fife and Blue Stem. They gave him, on inspection, some better specimens, "phenomenal yielders" as he called them. These were simply isolated and propagated, and, after comparison with the parent-variety and with some other selected strains of less value, were judged to be of sufficient importance to be tested by cultivation all over the State of Minnesota. They have since almost supplanted the original types, at least in most parts of the State, with the result that the total yield of wheat in Minnesota is said to have been increased by about a million dollars yearly.

Definite progress in the method of single-ear sowing has, however, been made only recently. It had been foreshadowed by Patrick Shirreff, who after the production of the four varieties already mentioned, tried to carry out his work on a larger scale, by including numerous minor deviations from the main type. He found by doing so that the chances of obtaining a better form were sufficiently increased to justify the trial. But it was Nilsson who discovered the almost inexhaustible polymorphy of cereals and other agricultural crops and made it the starting-point for a new and entirely trustworthy method of the highest utility. By this means he has produced during the last fifteen years a number of new and valuable races, which have already supplanted the old types on numerous farms in Sweden and which are now being introduced on a large scale into Germany and other European countries.

It is now twenty years since the station at Svalof was founded. During the first period of its work, embracing about five years, selection was practised on the principle which was then generally used in Germany. In order to improve a race a sample of the best ears was carefully selected from the best fields of the variety. These ears were considered as representatives of the type under cultivation, and it was assumed that by sowing their grains on a small plot a family could be obtained, which could afterwards be improved by a continuous selection. Differences between the collected ears were either not observed or disregarded. At Svalof this method of selection was practised on a far larger scale than on any German farm, and the result was, broadly speaking, the same. This may be stated in the following words: improvement in a few cases, failure in all the others. Some few varieties could be improved and yielded excellent new types, some of which have since been introduced into Swedish agriculture and are now prominent races in the southern and middle parts of the country. But the station had definite aims, and among them was the improvement of the Chevalier barley. This, in Middle Sweden, is a fine brewer's barley, but liable to failure during unfavourable summers on account of its slender stems. It was selected with a view of giving it stiffer stems, but in spite of all the care and work bestowed upon it no satisfactory result was obtained.

This experience, combined with a number of analogous failures, could not fail to throw doubt upon the whole method. It was evident that good results were only exceptions, and that in most cases the principle was not one that could be relied upon. The exceptions might be due to unknown causes, and not to the validity of the method; it became therefore of much more interest to search for the causes than to continue the work along these lines.

In the year 1892 a number of different varieties of cereals were cultivated on a large scale and a selection was again made from them. About two hundred samples of ears were chosen, each apparently constituting a different type. Their seeds were sown on separate plots and manured and treated as much as possible in the same manner. The plots were small and arranged in rows so as to facilitate the comparison of allied types. During the whole period of growth and during the ripening of the ears the plots were carefully studied and compared: they were harvested separately; ears and kernels were counted and weighed, and notes were made concerning layering, rust and other cereal pests.

The result of this experiment was, in the main, no distinct improvement. Nilsson was especially struck by the fact that the plots, which should represent distinct types, were far from uniform. Many of them were as multiform as the fields from which the parent-ears were taken. Others showed variability in a less degree, but in almost all of them it was clear that a pure race had not been obtained. The experiment was a fair one, inasmuch as it demonstrated the polymorphic variability of cereals beyond all doubt and in a degree hitherto unsuspected; but from the standpoint of the selectionist it was a failure. Fortunately there were, however, one or two exceptions. A few lots showed a perfect uniformity in regard to all the stalks and ears: these were small families. This fact suggested the idea that each might have been derived from a single ear. During the selection in the previous summer, Nilsson had tried to find as many ears as possible of each new type which he recognised in his fields. But the variability of his crops was so great, that he was rarely able to include more than two or three ears in the same group, and, in a few cases, he found only one representative of the supposed type. It might, therefore, be possible that those small uniform plots were the direct progeny of ears, the grains of which had not been mixed with those from other ears before sowing. Exact records had, of course, been kept of the chosen samples, and the number of ears had been noted in each case. It was, therefore, possible to answer the question and it was found that those plots alone were uniform on which the kernels of one single ear only had been sown. Nilsson concluded that the mixture of two or more ears in a single sowing might be the cause of the lack of uniformity in the progeny. Apparently similar ears might be different in their progeny.

Once discovered, this fact was elevated to the rank of a leading principle and tested on as large a scale as possible. The fields were again carefully investigated and every single ear, which showed a distinct divergence from the main type in one character or another, was selected. A thousand samples were chosen, but this time each sample consisted of one ear only. Next year, the result corresponded to the expectation. Uniformity prevailed almost everywhere; only a few lots showed a discrepancy, which might be ascribed to the accidental selection of hybrid ears. It was now clear that the progeny of single ears was, as a rule, pure, whereas that of mixed ears was impure. The single-ear selection or single-ear sowing, which had fallen into discredit in Germany and elsewhere in Europe, was rediscovered. It proved to be the only trustworthy principle of selection. Once isolated, such single-parent races are constant from seed and remain true to their type. No further selection is needed; they have simply to be multiplied and their real value tested.

Patrick Shirreff, in his early experiments, Le Couteur, Hays and others had observed the rare occurrence of exceptionally good yielders and the value of their isolation to the agriculturist. The possibility of error in the choice of such striking specimens and the necessity of judging their value by their progeny were also known to these investigators, but they had not the slightest idea of all the possibilities suggested by their principle. Nilsson, who is a botanist as well as an agriculturist, discovered that, besides these exceptionably good yielders, every variety of a cereal consists of hundreds of different types, which find the best conditions for success when grown together, but which, after isolation, prove to be constant. Their preference for mixed growth is so definite, that once isolated, their claims on manure and treatment are found to be much higher than those of the original mixed variety. Moreover, the greatest care is necessary to enable them to retain their purity, and as soon as they are left to themselves they begin to deteriorate through accidental crosses and admixtures and rapidly return to the mixed condition.

Reverting now to Darwin's discussion of the variability of cereals, we may conclude that subsequent investigation has proved it to be exactly of the kind which he describes. The only difference is that in reality it reaches a degree, quite unexpected by Darwin and his contemporaries. But it is polymorphic variability in the strictest sense of the word. How the single constituents of a variety originate we do not see. We may assume, and there can hardly be a doubt about the truth of the assumption, that a new character, once produced, will slowly but surely be combined through accidental crosses with a large number of previously existing types, and so will tend to double the number of the constituents of the variety. But whether it first appears suddenly or whether it is only slowly evolved we cannot determine. It would, of course, be impossible to observe either process in such a mixture. Only cultures of pure races, of single-parent races as we have called them, can afford an opportunity for this kind of observation. In the fields of Svalof new and unexpected qualities have recently been seen, from time to time, to appear suddenly. These characters are as distinct as the older ones and appear to be constant from the moment of their origin.

Darwin has repeatedly insisted that man does not cause variability. He simply selects the variations given to him by the hand of nature. He may repeat this process in order to accumulate different new characters in the same family, thus producing varieties of a higher order. This process of accumulation would, if continued for a longer time, lead to the augmentation of the slight differences characteristic of varieties into the greater differences characteristic of species and genera. It is in this way that horticultural and agricultural experience contribute to the problem of the conversion of varieties into species, and to the explanation of the admirable adaptations of each organism to its complex conditions of life. In the long run new forms, distinguished from their allies by quite a number of new characters, would, by the extermination of the older intermediates, become distinct species.

Thus we see that the theory of the origin of species by means of natural selection is quite independent of the question, how the variations to be selected arise. They may arise slowly, from simple fluctuations, or suddenly, by mutations; in both cases natural selection will take hold of them, will multiply them if they are beneficial, and in the course of time accumulate them, so as to produce that great diversity of organic life, which we so highly admire.

Darwin has left the decision of this difficult and obviously subordinate point to his followers. But in his Pangenesis hypothesis he has given us the clue for a close study and ultimate elucidation of the subject under discussion.



V. HEREDITY AND VARIATION IN MODERN LIGHTS. By W. Bateson, M.A., F.R.S.

Professor of Biology in the University of Cambridge.

Darwin's work has the property of greatness in that it may be admired from more aspects than one. For some the perception of the principle of Natural Selection stands out as his most wonderful achievement to which all the rest is subordinate. Others, among whom I would range myself, look up to him rather as the first who plainly distinguished, collected, and comprehensively studied that new class of evidence from which hereafter a true understanding of the process of Evolution may be developed. We each prefer our own standpoint of admiration; but I think that it will be in their wider aspect that his labours will most command the veneration of posterity.

A treatise written to advance knowledge may be read in two moods. The reader may keep his mind passive, willing merely to receive the impress of the writer's thought; or he may read with his attention strained and alert, asking at every instant how the new knowledge can be used in a further advance, watching continually for fresh footholds by which to climb higher still. Of Shelley it has been said that he was a poet for poets: so Darwin was a naturalist for naturalists. It is when his writings are used in the critical and more exacting spirit with which we test the outfit for our own enterprise that we learn their full value and strength. Whether we glance back and compare his performance with the efforts of his predecessors, or look forward along the course which modern research is disclosing, we shall honour most in him not the rounded merit of finite accomplishment, but the creative power by which he inaugurated a line of discovery endless in variety and extension. Let us attempt thus to see his work in true perspective between the past from which it grew, and the present which is its consequence. Darwin attacked the problem of Evolution by reference to facts of three classes: Variation; Heredity; Natural Selection. His work was not as the laity suppose, a sudden and unheralded revelation, but the first fruit of a long and hitherto barren controversy. The occurrence of variation from type, and the hereditary transmission of such variation had of course been long familiar to practical men, and inferences as to the possible bearing of those phenomena on the nature of specific difference had been from time to time drawn by naturalists. Maupertuis, for example, wrote "Ce qui nous reste a examiner, c'est comment d'un seul individu, il a pu naitre tant d'especes si differentes." And again "La Nature contient le fonds de toutes ces varietes: mais le hasard ou l'art les mettent en oeuvre. C'est ainsi que ceux dont l'industrie s'applique a satisfaire le gout des curieux, sont, pour ainsi dire, creatures d'especes nouvelles." ("Venus Physique, contenant deux Dissertations, l'une sur l'origine des Hommes et des Animaux: Et l'autre sur l'origine des Noirs" La Haye, 1746, pages 124 and 129. For an introduction to the writings of Maupertuis I am indebted to an article by Professor Lovejoy in "Popular Sci. Monthly", 1902.)

Such passages, of which many (though few so emphatic) can be found in eighteenth century writers, indicate a true perception of the mode of Evolution. The speculations hinted at by Buffon (For the fullest account of the views of these pioneers of Evolution, see the works of Samuel Butler, especially "Evolution, Old and New" (2nd edition) 1882. Butler's claims on behalf of Buffon have met with some acceptance; but after reading what Butler has said, and a considerable part of Buffon's own works, the word "hinted" seems to me a sufficiently correct description of the part he played. It is interesting to note that in the chapter on the Ass, which contains some of his evolutionary passages, there is a reference to "plusieurs idees tres-elevees sur la generation" contained in the Letters of Maupertuis.), developed by Erasmus Darwin, and independently proclaimed above all by Lamarck, gave to the doctrine of descent a wide renown. The uniformitarian teaching which Lyell deduced from geological observation had gained acceptance. The facts of geographical distribution (See especially W. Lawrence, "Lectures on Physiology", London, 1823, pages 213 f.) had been shown to be obviously inconsistent with the Mosaic legend. Prichard, and Lawrence, following the example of Blumenbach, had successfully demonstrated that the races of Man could be regarded as different forms of one species, contrary to the opinion up till then received. These treatises all begin, it is true, with a profound obeisance to the sons of Noah, but that performed, they continue on strictly modern lines. The question of the mutability of species was thus prominently raised.

Those who rate Lamarck no higher than did Huxley in his contemptuous phrase "buccinator tantum," will scarcely deny that the sound of the trumpet had carried far, or that its note was clear. If then there were few who had already turned to evolution with positive conviction, all scientific men must at least have known that such views had been promulgated; and many must, as Huxley says, have taken up his own position of "critical expectancy." (See the chapter contributed to the "Life and Letters of Charles Darwin" II. page 195. I do not clearly understand the sense in which Darwin wrote (Autobiography, ibid. I. page 87): "It has sometimes been said that the success of the "Origin" proved 'that the subject was in the air,' or 'that men's minds were prepared for it.' I do not think that this is strictly true, for I occasionally sounded not a few naturalists, and never happened to come across a single one who seemed to doubt about the permanence of species." This experience may perhaps have been an accident due to Darwin's isolation. The literature of the period abounds with indications of "critical expectancy." A most interesting expression of that feeling is given in the charming account of the "Early Days of Darwinism" by Alfred Newton, "Macmillan's Magazine", LVII. 1888, page 241. He tells how in 1858 when spending a dreary summer in Iceland, he and his friend, the ornithologist John Wolley, in default of active occupation, spent their days in discussion. "Both of us taking a keen interest in Natural History, it was but reasonable that a question, which in those days was always coming up wherever two or more naturalists were gathered together, should be continually recurring. That question was, 'What is a species?' and connected therewith was the other question, 'How did a species begin?'... Now we were of course fairly well acquainted with what had been published on these subjects." He then enumerates some of these publications, mentioning among others T. Vernon Wollaston's "Variation of Species"—a work which has in my opinion never been adequately appreciated. He proceeds: "Of course we never arrived at anything like a solution of these problems, general or special, but we felt very strongly that a solution ought to be found, and that quickly, if the study of Botany and Zoology was to make any great advance." He then describes how on his return home he received the famous number of the "Linnean Journal" on a certain evening. "I sat up late that night to read it; and never shall I forget the impression it made upon me. Herein was contained a perfectly simple solution of all the difficulties which had been troubling me for months past... I went to bed satisfied that a solution had been found.")

Why, then, was it, that Darwin succeeded where the rest had failed? The cause of that success was two-fold. First, and obviously, in the principle of Natural Selection he had a suggestion which would work. It might not go the whole way, but it was true as far as it went. Evolution could thus in great measure be fairly represented as a consequence of demonstrable processes. Darwin seldom endangers the mechanism he devised by putting on it strains much greater than it can bear. He at least was under no illusion as to the omnipotence of Selection; and he introduces none of the forced pleading which in recent years has threatened to discredit that principle.

For example, in the latest text of the "Origin" ("Origin", (6th edition (1882), page 421.)) we find him saying:

"But as my conclusions have lately been much misrepresented, and it has been stated that I attribute the modification of species exclusively to natural selection, I may be permitted to remark that in the first edition of this work, and subsequently, I placed in a most conspicuous position—namely, at the close of the Introduction—the following words: 'I am convinced that natural selection has been the main but not the exclusive means of modification.'"

But apart from the invention of this reasonable hypothesis, which may well, as Huxley estimated, "be the guide of biological and psychological speculation for the next three or four generations," Darwin made a more significant and imperishable contribution. Not for a few generations, but through all ages he should be remembered as the first who showed clearly that the problems of Heredity and Variation are soluble by observation, and laid down the course by which we must proceed to their solution. (Whatever be our estimate of the importance of Natural Selection, in this we all agree. Samuel Butler, the most brilliant, and by far the most interesting of Darwin's opponents—whose works are at length emerging from oblivion—in his Preface (1882) to the 2nd edition of "Evolution, Old and New", repeats his earlier expression of homage to one whom he had come to regard as an enemy: "To the end of time, if the question be asked, 'Who taught people to believe in Evolution?' the answer must be that it was Mr. Darwin. This is true, and it is hard to see what palm of higher praise can be awarded to any philosopher.") The moment of inspiration did not come with the reading of Malthus, but with the opening of the "first note-book on Transmutation of Species." ("Life and Letters", I. pages 276 and 83.) Evolution is a process of Variation and Heredity. The older writers, though they had some vague idea that it must be so, did not study Variation and Heredity. Darwin did, and so begat not a theory, but a science.

The extent to which this is true, the scientific world is only beginning to realise. So little was the fact appreciated in Darwin's own time that the success of his writings was followed by an almost total cessation of work in that special field. Of the causes which led to this remarkable consequence I have spoken elsewhere. They proceeded from circumstances peculiar to the time; but whatever the causes there is no doubt that this statement of the result is historically exact, and those who make it their business to collect facts elucidating the physiology of Heredity and Variation are well aware that they will find little to reward their quest in the leading scientific Journals of the Darwinian epoch.

In those thirty years the original stock of evidence current and in circulation even underwent a process of attrition. As in the story of the Eastern sage who first wrote the collected learning of the universe for his sons in a thousand volumes, and by successive compression and burning reduced them to one, and from this by further burning distilled the single ejaculation of the Faith, "There is no god but God and Mohamed is the Prophet of God," which was all his maturer wisdom deemed essential:—so in the books of that period do we find the corpus of genetic knowledge dwindle to a few prerogative instances, and these at last to the brief formula of an unquestioned creed.

And yet in all else that concerns biological science this period was, in very truth, our Golden Age, when the natural history of the earth was explored as never before; morphology and embryology were exhaustively ransacked; the physiology of plants and animals began to rival chemistry and physics in precision of method and in the rapidity of its advances; and the foundations of pathology were laid.

In contrast with this immense activity elsewhere the neglect which befel the special physiology of Descent, or Genetics as we now call it, is astonishing. This may of course be interpreted as meaning that the favoured studies seemed to promise a quicker return for effort, but it would be more true to say that those who chose these other pursuits did so without making any such comparison; for the idea that the physiology of Heredity and Variation was a coherent science, offering possibilities of extraordinary discovery, was not present to their minds at all. In a word, the existence of such a science was well nigh forgotten. It is true that in ancillary periodicals, as for example those that treat of entomology or horticulture, or in the writings of the already isolated systematists (This isolation of the systematists is the one most melancholy sequela of Darwinism. It seems an irony that we should read in the peroration to the "Origin" that when the Darwinian view is accepted "Systematists will be able to pursue their labours as at present; but they will not be incessantly haunted by the shadowy doubt whether this or that form be a true species. This, I feel sure, and I speak after experience, will be no slight relief. The endless disputes whether or not some fifty species of British brambles are good species will cease." "Origin", 6th edition (1882), page 425. True they have ceased to attract the attention of those who lead opinion, but anyone who will turn to the literature of systematics will find that they have not ceased in any other sense. Should there not be something disquieting in the fact that among the workers who come most into contact with specific differences, are to be found the only men who have failed to be persuaded of the unreality of those differences?), observations with this special bearing were from time to time related, but the class of fact on which Darwin built his conceptions of Heredity and Variation was not seen in the highways of biology. It formed no part of the official curriculum of biological students, and found no place among the subjects which their teachers were investigating.

During this period nevertheless one distinct advance was made, that with which Weismann's name is prominently connected. In Darwin's genetic scheme the hereditary transmission of parental experience and its consequences played a considerable role. Exactly how great that role was supposed to be, he with his habitual caution refrained from specifying, for the sufficient reason that he did not know. Nevertheless much of the process of Evolution, especially that by which organs have become degenerate and rudimentary, was certainly attributed by Darwin to such inheritance, though since belief in the inheritance of acquired characters fell into disrepute, the fact has been a good deal overlooked. The "Origin" without "use and disuse" would be a materially different book. A certain vacillation is discernible in Darwin's utterances on this question, and the fact gave to the astute Butler an opportunity for his most telling attack. The discussion which best illustrates the genetic views of the period arose in regard to the production of the rudimentary condition of the wings of many beetles in the Madeira group of islands, and by comparing passages from the "Origin" (6th edition pages 109 and 401. See Butler, "Essays on Life, Art, and Science", page 265, reprinted 1908, and "Evolution, Old and New", chapter XXII. (2nd edition), 1882.) Butler convicts Darwin of saying first that this condition was in the main the result of Selection, with disuse aiding, and in another place that the main cause of degeneration was disuse, but that Selection had aided. To Darwin however I think the point would have seemed one of dialectics merely. To him the one paramount purpose was to show that somehow an Evolution by means of Variation and Heredity might have brought about the facts observed, and whether they had come to pass in the one way or the other was a matter of subordinate concern.

To us moderns the question at issue has a diminished significance. For over all such debates a change has been brought by Weismann's challenge for evidence that use and disuse have any transmitted effects at all. Hitherto the transmission of many acquired characteristics had seemed to most naturalists so obvious as not to call for demonstration. (W. Lawrence was one of the few who consistently maintained the contrary opinion. Prichard, who previously had expressed himself in the same sense, does not, I believe repeat these views in his later writings, and there are signs that he came to believe in the transmission of acquired habits. See Lawrence, "Lect. Physiol." 1823, pages 436-437, 447 Prichard, Edin. Inaug. Disp. 1808 (not seen by me), quoted ibid. and "Nat. Hist. Man", 1843, pages 34 f.) Weismann's demand for facts in support of the main proposition revealed at once that none having real cogency could be produced. The time-honoured examples were easily shown to be capable of different explanations. A few certainly remain which cannot be so summarily dismissed, but—though it is manifestly impossible here to do justice to such a subject—I think no one will dispute that these residual and doubtful phenomena, whatever be their true nature, are not of a kind to help us much in the interpretation of any of those complex cases of adaptation which on the hypothesis of unguided Natural Selection are especially difficult to understand. Use and disuse were invoked expressly to help us over these hard places; but whatever changes can be induced in offspring by direct treatment of the parents, they are not of a kind to encourage hope of real assistance from that quarter. It is not to be denied that through the collapse of this second line of argument the Selection hypothesis has had to take an increased and perilous burden. Various ways of meeting the difficulty have been proposed, but these mostly resolve themselves into improbable attempts to expand or magnify the powers of Natural Selection.

Weismann's interpellation, though negative in purpose, has had a lasting and beneficial effect, for through his thorough demolition of the old loose and distracting notions of inherited experience, the ground has been cleared for the construction of a true knowledge of heredity based on experimental fact.

In another way he made a contribution of a more positive character, for his elaborate speculations as to the genetic meaning of cytological appearances have led to a minute investigation of the visible phenomena occurring in those divisions by which germ-cells arise. Though the particular views he advocated have very largely proved incompatible with the observed facts of heredity, yet we must acknowledge that it was chiefly through the stimulus of Weismann's ideas that those advances in cytology were made; and though the doctrine of the continuity of germ-plasm cannot be maintained in the form originally propounded, it is in the main true and illuminating. (It is interesting to see how nearly Butler was led by natural penetration, and from absolutely opposite conclusions, back to this underlying truth: "So that each ovum when impregnate should be considered not as descended from its ancestors, but as being a continuation of the personality of every ovum in the chain of its ancestry, which every ovum IT ACTUALLY IS quite as truly as the octogenarian IS the same identity with the ovum from which he has been developed. This process cannot stop short of the primordial cell, which again will probably turn out to be but a brief resting-place. We therefore prove each one of us to BE ACTUALLY the primordial cell which never died nor dies, but has differentiated itself into the life of the world, all living beings whatever, being one with it and members one of another," "Life and Habit", 1878, page 86.) Nevertheless in the present state of knowledge we are still as a rule quite unable to connect cytological appearances with any genetic consequence and save in one respect (obviously of extreme importance—to be spoken of later) the two sets of phenomena might, for all we can see, be entirely distinct.

I cannot avoid attaching importance to this want of connection between the nuclear phenomena and the features of bodily organisation. All attempts to investigate Heredity by cytological means lie under the disadvantage that it is the nuclear changes which can alone be effectively observed. Important as they must surely be, I have never been persuaded that the rest of the cell counts for nothing. What we know of the behaviour and variability of chromosomes seems in my opinion quite incompatible with the belief that they alone govern form, and are the sole agents responsible in heredity. (This view is no doubt contrary to the received opinion. I am however interested to see it lately maintained by Driesch ("Science and Philosophy of the Organism", London, 1907, page 233), and from the recent observations of Godlewski it has received distinct experimental support.)

If, then, progress was to be made in Genetics, work of a different kind was required. To learn the laws of Heredity and Variation there is no other way than that which Darwin himself followed, the direct examination of the phenomena. A beginning could be made by collecting fortuitous observations of this class, which have often thrown a suggestive light, but such evidence can be at best but superficial and some more penetrating instrument of research is required. This can only be provided by actual experiments in breeding.

Previous Part     1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18     Next Part
Home - Random Browse