p-books.com
A System Of Logic, Ratiocinative And Inductive
by John Stuart Mill
Previous Part     1 ... 14  15  16  17  18  19  20  21  22  23  24  25  26  27  28     Next Part
Home - Random Browse

114 The assertion, that any and every one of the conditions of a phenomenon may be and is, on some occasions and for some purposes, spoken of as the cause, has been disputed by an intelligent reviewer of this work in the Prospective Review (the predecessor of the justly esteemed National Review), who maintains that "we always apply the word cause rather to that element in the antecedents which exercises force, and which would tend at all times to produce the same or a similar effect to that which, under certain conditions, it would actually produce." And he says, that "every one would feel" the expression, that the cause of a surprise was the sentinel's being off his post, to be incorrect; but that the "allurement or force which drew him off his post, might be so called, because in doing so it removed a resisting power which would have prevented the surprise." I can not think that it would be wrong to say, that the event took place because the sentinel was absent, and yet right to say that it took place because he was bribed to be absent. Since the only direct effect of the bribe was his absence, the bribe could be called the remote cause of the surprise, only on the supposition that the absence was the proximate cause; nor does it seem to me that any one (who had not a theory to support) would use the one expression and reject the other.

The reviewer observes, that when a person dies of poison, his possession of bodily organs is a necessary condition, but that no one would ever speak of it as the cause. I admit the fact; but I believe the reason to be, that the occasion could never arise for so speaking of it; for when in the inaccuracy of common discourse we are led to speak of some one condition of a phenomenon as its cause, the condition so spoken of is always one which it is at least possible that the hearer may require to be informed of. The possession of bodily organs is a known condition, and to give that as the answer, when asked the cause of a person's death, would not supply the information sought. Once conceive that a doubt could exist as to his having bodily organs, or that he were to be compared with some being who had them not, and cases may be imagined in which it might be said that his possession of them was the cause of his death. If Faust and Mephistopheles together took poison, it might be said that Faust died because he was a human being, and had a body, while Mephistopheles survived because he was a spirit.

It is for the same reason that no one (as the reviewer remarks) "calls the cause of a leap, the muscles or sinews of the body, though they are necessary conditions; nor the cause of a self-sacrifice, the knowledge which was necessary for it; nor the cause of writing a book, that a man has time for it, which is a necessary condition." These conditions (besides that they are antecedent states, and not proximate antecedent events, and are therefore never the conditions in closest apparent proximity to the effect) are all of them so obviously implied, that it is hardly possible there should exist that necessity for insisting on them, which alone gives occasion for speaking of a single condition as if it were the cause. Wherever this necessity exists in regard to some one condition, and does not exist in regard to any other, I conceive that it is consistent with usage, when scientific accuracy is not aimed at, to apply the name cause to that one condition. If the only condition which can be supposed to be unknown is a negative condition, the negative condition may be spoken of as the cause. It might be said that a person died for want of medical advice: though this would not be likely to be said, unless the person was already understood to be ill, and in order to indicate that this negative circumstance was what made the illness fatal, and not the weakness of his constitution, or the original virulence of the disease. It might be said that a person was drowned because he could not swim; the positive condition, namely, that he fell into the water, being already implied in the word drowned. And here let me remark, that his falling into the water is in this case the only positive condition: all the conditions not expressly or virtually included in this (as that he could not swim, that nobody helped him, and so forth) are negative. Yet, if it were simply said that the cause of a man's death was falling into the water, there would be quite as great a sense of impropriety in the expression, as there would be if it were said that the cause was his inability to swim; because, though the one condition is positive and the other negative, it would be felt that neither of them was sufficient, without the other, to produce death.

With regard to the assertion that nothing is termed the cause, except the element which exerts active force; I waive the question as to the meaning of active force, and accepting the phrase in its popular sense, I revert to a former example, and I ask, would it be more agreeable to custom to say that a man fell because his foot slipped in climbing a ladder, or that he fell because of his weight? for his weight, and not the motion of his foot, was the active force which determined his fall. If a person walking out in a frosty day, stumbled and fell, it might be said that he stumbled because the ground was slippery, or because he was not sufficiently careful: but few people, I suppose, would say, that he stumbled because he walked. Yet the only active force concerned was that which he exerted in walking: the others were mere negative conditions; but they happened to be the only ones which there could be any necessity to state; for he walked, most likely, in exactly his usual manner, and the negative conditions made all the difference. Again, if a person were asked why the army of Xerxes defeated that of Leonidas, he would probably say, because they were a thousand times the number; but I do not think he would say, it was because they fought, though that was the element of active force. To borrow another example, used by Mr. Grove and by Mr. Baden Powell, the opening of flood-gates is said to be the cause of the flow of water; yet the active force is exerted by the water itself, and opening the flood-gates merely supplies a negative condition. The reviewer adds, "There are some conditions absolutely passive, and yet absolutely necessary to physical phenomena, viz., the relations of space and time; and to these no one ever applies the word cause without being immediately arrested by those who hear him." Even from this statement I am compelled to dissent. Few persons would feel it incongruous to say (for example) that a secret became known because it was spoken of when A. B. was within hearing; which is a condition of space: or that the cause why one of two particular trees is taller than the other, is that it has been longer planted; which is a condition of time.

115 There are a few exceptions; for there are some properties of objects which seem to be purely preventive; as the property of opaque bodies, by which they intercept the passage of light. This, as far as we are able to understand it, appears an instance not of one cause counteracting another by the same law whereby it produces its own effects, but of an agency which manifests itself in no other way than in defeating the effects of another agency. If we knew on what other relations to light, or on what peculiarities of structure, opacity depends, we might find that this is only an apparent, not a real, exception to the general proposition in the text. In any case it needs not affect the practical application. The formula which includes all the negative conditions of an effect in the single one of the absence of counteracting causes, is not violated by such cases as this; though, if all counteracting agencies were of this description, there would be no purpose served by employing the formula.

116 I mean by this expression, the ultimate laws of nature (whatever they may be) as distinguished from the derivative laws and from the collocations. The diurnal revolution of the earth (for example) is not a part of the constitution of things, because nothing can be so called which might possibly be terminated or altered by natural causes.

117 I use the words "straight line" for brevity and simplicity. In reality the line in question is not exactly straight, for, from the effect of refraction, we actually see the sun for a short interval during which the opaque mass of the earth is interposed in a direct line between the sun and our eyes; thus realizing, though but to a limited extent, the coveted desideratum of seeing round a corner.

118 Second Burnett Prize Essay, by Principal Tulloch, p. 25.

119 Letters on the Philosophy of the Human Mind, First Series, p. 219.

120 Essays, pp. 206-208.

121 To the universality which mankind are agreed in ascribing to the Law of Causation, there is one claim of exception, one disputed case, that of the Human Will; the determinations of which, a large class of metaphysicians are not willing to regard as following the causes called motives, according to as strict laws as those which they suppose to exist in the world of mere matter. This controverted point will undergo a special examination when we come to treat particularly of the Logic of the Moral Sciences (Book vi., chap. 2). In the mean time, I may remark that these metaphysicians, who, it must be observed, ground the main part of their objection on the supposed repugnance of the doctrine in question to our consciousness, seem to me to mistake the fact which consciousness testifies against. What is really in contradiction to consciousness, they would, I think, on strict self-examination, find to be, the application to human actions and volitions of the ideas involved in the common use of the term Necessity; which I agree with them in objecting to. But if they would consider that by saying that a person's actions necessarily follow from his character, all that is really meant (for no more is meant in any case whatever of causation) is that he invariably does act in conformity to his character, and that any one who thoroughly knew his character could certainly predict how he would act in any supposable case; they probably would not find this doctrine either contrary to their experience or revolting to their feelings. And no more than this is contended for by any one but an Asiatic fatalist.

122 I believe, however, the accredited authorities do suppose that molecular motion, equivalent in amount to that which will be manifested in the combustion of the coal, is actually taking place during the whole of the long interval, if not in the coal, yet in the oxygen which will then combine with it. But how purely hypothetical this supposition is, need hardly be remarked; I venture to say, unnecessarily and extravagantly hypothetical.

123 Lectures on Metaphysics, vol. ii., Lect. xxxix., pp. 391-2.

I regret that I can not invoke the authority of Sir William Hamilton in favor of my own opinions on Causation, as I can against the particular theory which I am now combating. But that acute thinker has a theory of Causation peculiar to himself, which has never yet, as far as I know, been analytically examined, but which, I venture to think, admits of as complete refutation as any one of the false or insufficient psychological theories which strew the ground in such numbers under his potent metaphysical scythe. (Since examined and controverted in the sixteenth chapter of An Examination of Sir William Hamilton's Philosophy.)

124 Unless we are to consider as such the following statement, by one of the writers quoted in the text: "In the case of mental exertion, the result to be accomplished is preconsidered or meditated, and is therefore known a priori, or before experience."—(Bowen's Lowell Lectures on the Application of Metaphysical and Ethical Science to the Evidence of Religion. Boston, 1849.) This is merely saying that when we will a thing we have an idea of it. But to have an idea of what we wish to happen, does not imply a prophetic knowledge that it will happen. Perhaps it will be said that the first time we exerted our will, when we had of course no experience of any of the powers residing in us, we nevertheless must already have known that we possessed them, since we can not will that which we do not believe to be in our power. But the impossibility is perhaps in the words only, and not in the facts; for we may desire what we do not know to be in our power; and finding by experience that our bodies move according to our desire, we may then, and only then, pass into the more complicated mental state which is termed will.

After all, even if we had an instinctive knowledge that our actions would follow our will, this, as Brown remarks, would prove nothing as to the nature of Causation. Our knowing, previous to experience, that an antecedent will be followed by a certain consequent, would not prove the relation between them to be any thing more than antecedence and consequence.

125 Reid's Essays on the Active Powers, Essay iv., chap. 3.

126 Prospective Review for February, 1850.

127 Vide supra, p. 178, note.

128 Westminster Review for October, 1855.

129 See the whole doctrine in Aristotle de Anima, where the θρεπτικὴ ψυχὴ is treated as exactly equivalent to θρεπτικὴ δύναμις.

130 It deserves notice that the parts of nature which Aristotle regards as representing evidence of design, are the Uniformities: the phenomena in so far as reducible to law. Τύχη and τὸ αὐτομάτον satisfy him as explanations of the variable element in phenomena, but their occurring according to a fixed rule can only, to his conceptions, be accounted for by an Intelligent Will. The common, or what may be called the instinctive, religious interpretation of nature, is the reverse of this. The events in which men spontaneously see the hand of a supernatural being, are those which can not, as they think, be reduced to a physical law. What they can distinctly connect with physical causes, and especially what they can predict, though of course ascribed to an Author of Nature, if they already recognize such an author, might be conceived, they think, to arise from a blind fatality, and in any case do not appear to them to bear so obviously the mark of a divine will. And this distinction has been countenanced by eminent writers on Natural Theology, in particular by Dr. Chalmers, who thinks that though design is present everywhere, the irresistible evidence of it is to be found not in the laws of nature but in the collocations, i.e., in the part of nature in which it is impossible to trace any law. A few properties of dead matter might, he thinks, conceivably account for the regular and invariable succession of effects and causes; but that the different kinds of matter have been so placed as to promote beneficent ends, is what he regards as the proof of a Divine Providence. Mr. Baden Powell, in his Essay entitled "Philosophy of Creation," has returned to the point of view of Aristotle and the ancients, and vigorously re-asserts the doctrine that the indication of design in the universe is not special adaptations, but Uniformity and Law, these being the evidences of mind, and not what appears to us to be a provision for our uses. While I decline to express any opinion here on this vexata quaestio, I ought not to mention Mr. Powell's volume without the acknowledgment due to the philosophic spirit which pervades generally the three Essays composing it, forming in the case of one of them (the "Unity of Worlds") an honorable contrast with the other dissertations, so far as they have come under my notice, which have appeared on either side of that controversy.

131 In the words of Fontenelle, another celebrated Cartesian, "les philosophes aussi bien que le peuple avaient cru que l'ame et le corps agissaient reellement et physiquement l'un sur l'autre. Descartes vint, qui prouva que leur nature ne permettait point cette sorte de communication veritable, et qu'ils n'en pouvaient avoir qu'une apparente, dont Dieu etait le Mediateur."—(OEuvres de Fontenelle, ed. 1767, tom. v., p. 534.)

132 I omit, for simplicity, to take into account the effect, in this latter case, of the diminution of pressure, in diminishing the flow of water through the drain; which evidently in no way affects the truth or applicability of the principle, since when the two causes act simultaneously the conditions of that diminution of pressure do not arise.

133 Professor Bain adds several other well-established chemical generalizations: "The laws that simple substances exhibit the strongest affinities; that compounds are more fusible than their elements; that combination tends to a lower state of matter from gas down to solid;" and some general propositions concerning the circumstances which facilitate or resist chemical combination. (Logic, ii., 254.)

134 Professor Bain (Logic, ii., 39) points out a class of cases, other than that spoken of in the text, which he thinks must be regarded as an exception to the Composition of Causes. "Causes that merely make good the collocation for bringing a prime mover into action, or that release a potential force, do not follow any such rule. One man may direct a gun upon a fort as well as three: two sparks are not more effectual than one in exploding a barrel of gunpowder. In medicine there is a certain dose that answers the end; and adding to it does no more good."

I am not sure that these cases are really exceptions. The law of Composition of Causes, I think, is really fulfilled, and the appearance to the contrary is produced by attending to the remote instead of the immediate effect of the causes. In the cases mentioned, the immediate effect of the causes in action is a collocation, and the duplication of the cause does double the quantity of collocation. Two men could raise the gun to the required angle twice as quickly as one, though one is enough. Two sparks put two sets of particles of the gunpowder into the state of intestine motion which makes them explode, though one is sufficient. It is the collocation itself that does not, by being doubled, always double the effect; because in many cases a certain collocation, once obtained, is all that is required for the production of the whole amount of effect which can be produced at all at the given time and place. Doubling the collocation with difference of time and place, as by pointing two guns, or exploding a second barrel after the first, does double the effect. This remark applies still more to Mr. Bain's third example, that of a double dose of medicine; for a double dose of an aperient does purge more violently, and a double dose of laudanum does produce longer and sounder sleep. But a double purging, or a double amount of narcotism, may have remote effects different in kind from the effect of the smaller amount, reducing the case to that of heteropathic laws, discussed in the text.

135 Unless, indeed, the consequent was generated, not by the antecedent, but by the means employed to produce the antecedent. As, however, these means are under our power, there is so far a probability that they are also sufficiently within our knowledge to enable us to judge whether that could be the case or not.

136 Discourse on the Study of Natural Philosophy, p. 179.

137 For this speculation, as for many other of my scientific illustrations, I am indebted to Professor Bain, whose subsequent treatise on Logic abounds with apt illustrations of all the inductive methods.

138 This view of the necessary co-existence of opposite excitements involves a great extension of the original doctrine of two electricities. The early theorists assumed that, when amber was rubbed, the amber was made positive and the rubber negative to the same degree; but it never occurred to them to suppose that the existence of the amber charge was dependent on an opposite charge in the bodies with which the amber was contiguous, while the existence of the negative charge on the rubber was equally dependent on a contrary state of the surfaces that might accidentally be confronted with it; that, in fact, in a case of electrical excitement by friction, four charges were the minimum that could exist. But this double electrical action is essentially implied in the explanation now universally adopted in regard to the phenomena of the common electric machine.

139 Pp. 110, 111.

140 Infra, book iv., chap. ii., On Abstraction.

141 I must, however, remark, that this example, which seems to militate against the assertion we made of the comparative inapplicability of the Method of Difference to cases of pure observation, is really one of those exceptions which, according to a proverbial expression, prove the general rule. For in this case, in which Nature, in her experiment, seems to have imitated the type of the experiments made by man, she has only succeeded in producing the likeness of man's most imperfect experiments; namely, those in which, though he succeeds in producing the phenomenon, he does so by employing complex means, which he is unable perfectly to analyze, and can form, therefore, no sufficient judgment what portion of the effects may be due, not to the supposed cause, but to some unknown agency of the means by which that cause was produced. In the natural experiment which we are speaking of, the means used was the clearing off a canopy of clouds; and we certainly do not know sufficiently in what this process consists, or on what it depends, to be certain a priori that it might not operate upon the deposition of dew independently of any thermometric effect at the earth's surface. Even, therefore, in a case so favorable as this to Nature's experimental talents, her experiment is of little value except in corroboration of a conclusion already attained through other means.

142 In his subsequent work, Outlines of Astronomy ( 570), Sir John Herschel suggests another possible explanation of the acceleration of the revolution of a comet.

143 Discourse, pp. 156-8, and 171.

144 Outlines of Astronomy, 856.

145 Philosophy of Discovery, pp. 263, 264.

146 See, on this point, the second chapter of the present book.

147 Ante, chap. vii., 1.

148 It seems hardly necessary to say that the word impinge, as a general term to express collision of forces, is here used by a figure of speech, and not as expressive of any theory respecting the nature of force.

149 Essays on some Unsettled Questions of Political Economy, Essay V.

150 It is justly remarked by Professor Bain, that though the Methods of Agreement and Difference are not applicable to these cases, they are not wholly inaccessible to the Method of Concomitant Variations. "If a cause happens to vary alone, the effect will also vary alone: a cause and effect may be thus singled out under the greatest complications. Thus, when the appetite for food increases with the cold, we have a strong evidence of connection between these two facts, although other circumstances may operate in the same direction. The assigning of the respective parts of the sun and moon in the action of the tides may be effected, to a certain degree of exactness, by the variations of the amount according to the positions of the two attractive bodies. By a series of experiments of Concomitant Variations, directed to ascertain the elimination of nitrogen from the human body under varieties of muscular exercise, Dr. Parkes obtained the remarkable conclusion, that a muscle grows during exercise, and loses bulk during the subsequent rest." (Logic, ii., 83.)

It is, no doubt, often possible to single out the influencing causes from among a great number of mere concomitants, by noting what are the antecedents, a variation in which is followed by a variation in the effect. But when there are many influencing causes, no one of them greatly predominating over the rest, and especially when some of these are continually changing, it is scarcely ever possible to trace such a relation between the variations of the effect and those of any one cause as would enable us to assign to that cause its real share in the production of the effect.

151 Bain's Logic, ii., 360.

152 What is said in the text on the applicability of the experimental methods to resolve particular questions of medical treatment, does not detract from their efficacy in ascertaining the general laws of the animal or human system. The functions, for example, of the different classes of nerves have been discovered, and probably could only have been discovered, by experiments on living animals. Observation and experiment are the ultimate basis of all knowledge: from them we obtain the elementary laws of life, as we obtain all other elementary truths. It is in dealing with the complex combinations that the experimental methods are for the most part illusory, and the deductive mode of investigation must be invoked to disentangle the complexity.

153 Professor Bain, though concurring generally in the views expressed in this chapter, seems to estimate more highly than I do the scope for specific experimental evidence in politics. (Logic, ii., 333-337.) There are, it is true, as he remarks (p. 336), some cases "when an agent suddenly introduced is almost instantaneously followed by some other changes, as when the announcement of a diplomatic rupture between two nations is followed the same day by a derangement of the money-market." But this experiment would be quite inconclusive merely as an experiment. It can only serve, as any experiment may, to verify the conclusion of a deduction. Unless we already knew by our knowledge of the motives which act on business men, that the prospect of war tends to derange the money-market, we should never have been able to prove a connection between the two facts, unless after having ascertained historically that the one followed the other in too great a number of instances to be consistent with their having been recorded with due precautions. Whoever has carefully examined any of the attempts continually made to prove economic doctrines by such a recital of instances, knows well how futile they are. It always turns out that the circumstances of scarcely any of the cases have been fully stated; and that cases, in equal or greater numbers, have been omitted which would have tended to an opposite conclusion.

154 Vide Memoir by Thomas Graham, F.R.S., Master of the Mint, "On Liquid Diffusion applied to Analysis," in the Philosophical Transactions for 1862, reprinted in the Journal of the Chemical Society, and also separately as a pamphlet.

155 It was an old generalization in surgery, that tight bandaging had a tendency to prevent or dissipate local inflammation. This sequence, being, in the progress of physiological knowledge, resolved into more general laws, led to the important surgical invention made by Dr. Arnott, the treatment of local inflammation and tumors by means of an equable pressure, produced by a bladder partially filled with air. The pressure, by keeping back the blood from the part, prevents the inflammation, or the tumor, from being nourished: in the case of inflammation, it removes the stimulus, which the organ is unfit to receive; in the case of tumors, by keeping back the nutritive fluid, it causes the absorption of matter to exceed the supply, and the diseased mass is gradually absorbed and disappears.

156 Since acknowledged and reprinted in Mr. Martineau's Miscellanies.

157 Dissertations and Discussions, vol. i., fourth paper.

158 Written before the rise of the new views respecting the relation of heat to mechanical force; but confirmed rather than contradicted by them.

159 As is well remarked by Professor Bain, in the very valuable chapter of his Logic which treats of this subject (ii., 121), "scientific explanation and inductive generalization being the same thing, the limits of Explanation are the limits of Induction," and "the limits to inductive generalization are the limits to the agreement or community of facts. Induction supposes similarity among phenomena; and when such similarity is discovered, it reduces the phenomena under a common statement. The similarity of terrestrial gravity to celestial attraction enables the two to be expressed as one phenomenon. The similarity between capillary attraction, solution, the operation of cements, etc., leads to their being regarded not as a plurality, but as a unity, a single causative link, the operation of a single agency.... If it be asked whether we can merge gravity itself in some still higher law, the answer must depend upon the facts. Are there any other forces, at present held distinct from gravity, that we may hope to make fraternize with it, so as to join in constituting a higher unity? Gravity is an attractive force; and another great attractive force is cohesion, or the force that binds together the atoms of solid matter. Might we, then, join these two in a still higher unity, expressed under a more comprehensive law? Certainly we might, but not to any advantage. The two kinds of force agree in the one point, attraction, but they agree in no other; indeed, in the manner of the attraction, they differ widely; so widely that we should have to state totally distinct laws for each. Gravity is common to all matter, and equal in amount in equal masses of matter, whatever be the kind; it follows the law of the diffusion of space from a point (the inverse square of the distance); it extends to distances unlimited; it is indestructible and invariable. Cohesion is special for each separate substance; it decreases according to distance much more rapidly than the inverse square, vanishing entirely at very small distances. Two such forces have not sufficient kindred to be generalized into one force; the generalization is only illusory; the statement of the difference would still make two forces; while the consideration of one would not in any way simplify the phenomena of the other, as happened in the generalization of gravity itself."

To the impassable limit of the explanation of laws of nature, set forth in the text, must therefore be added a further limitation. Although, when the phenomena to be explained are not, in their own nature, generically distinct, the attempt to refer them to the same cause is scientifically legitimate; yet to the success of the attempt it is indispensable that the cause should be shown to be capable of producing them according to the same law. Otherwise the unity of cause is a mere guess, and the generalization only a nominal one, which, even if admitted, would not diminish the number of ultimate laws of nature.

160 Cours de Philosophie Positive, ii., 656.

161 Vide supra, book iii., chap. xi.

162 Philosophy of Discovery, p. 185 et seq.

163 Comte, Philosophie Positive, ii., 434-437.

164 As an example of legitimate hypothesis according to the test here laid down, has been justly cited that of Broussais, who, proceeding on the very rational principle that every disease must originate in some definite part or other of the organism, boldly assumed that certain fevers, which not being known to be local were called constitutional, had their origin in the mucous membrane of the alimentary canal. The supposition was, indeed, as is now generally admitted, erroneous; but he was justified in making it, since by deducing the consequences of the supposition, and comparing them with the facts of those maladies, he might be certain of disproving his hypothesis if it was ill founded, and might expect that the comparison would materially aid him in framing another more conformable to the phenomena.

The doctrine now universally received that the earth is a natural magnet, was originally an hypothesis of the celebrated Gilbert.

Another hypothesis, to the legitimacy of which no objection can lie, and which is well calculated to light the path of scientific inquiry, is that suggested by several recent writers, that the brain is a voltaic pile, and that each of its pulsations is a discharge of electricity through the system. It has been remarked that the sensation felt by the hand from the beating of a brain, bears a strong resemblance to a voltaic shock. And the hypothesis, if followed to its consequences, might afford a plausible explanation of many physiological facts, while there is nothing to discourage the hope that we may in time sufficiently understand the conditions of voltaic phenomena to render the truth of the hypothesis amenable to observation and experiment.

The attempt to localize, in different regions of the brain, the physical organs of our different mental faculties and propensities, was, on the part of its original author, a legitimate example of a scientific hypothesis; and we ought not, therefore, to blame him for the extremely slight grounds on which he often proceeded, in an operation which could only be tentative, though we may regret that materials barely sufficient for a first rude hypothesis should have been hastily worked up into the vain semblance of a science. If there be really a connection between the scale of mental endowments and the various degrees of complication in the cerebral system, the nature of that connection was in no other way so likely to be brought to light as by framing, in the first instance, an hypothesis similar to that of Gall. But the verification of any such hypothesis is attended, from the peculiar nature of the phenomena, with difficulties which phrenologists have not shown themselves even competent to appreciate, much less to overcome.

Mr. Darwin's remarkable speculation on the Origin of Species is another unimpeachable example of a legitimate hypothesis. What he terms "natural selection" is not only a vera causa, but one proved to be capable of producing effects of the same kind with those which the hypothesis ascribes to it; the question of possibility is entirely one of degree. It is unreasonable to accuse Mr. Darwin (as has been done) of violating the rules of Induction. The rules of Induction are concerned with the conditions of Proof. Mr. Darwin has never pretended that his doctrine was proved. He was not bound by the rules of Induction, but by those of Hypothesis. And these last have seldom been more completely fulfilled. He has opened a path of inquiry full of promise, the results of which none can foresee. And is it not a wonderful feat of scientific knowledge and ingenuity to have rendered so bold a suggestion, which the first impulse of every one was to reject at once, admissible and discussible, even as a conjecture?

165 Whewell's Phil. of Discovery, pp. 275, 276.

166 What has most contributed to accredit the hypothesis of a physical medium for the conveyance of light, is the certain fact that light travels (which can not be proved of gravitation); that its communication is not instantaneous, but requires time; and that it is intercepted (which gravitation is not) by intervening objects. These are analogies between its phenomena and those of the mechanical motion of a solid or fluid substance. But we are not entitled to assume that mechanical motion is the only power in nature capable of exhibiting those attributes.

167 Phil. of Discovery, p. 274.

168 P. 271.

169 P. 251 and the whole of Appendix G.

170 In Dr. Whewell's latest version of his theory (Philosophy of Discovery, p. 331) he makes a concession respecting the medium of the transmission of light, which, taken in conjunction with the rest of his doctrine on the subject, is not, I confess, very intelligible to me, but which goes far toward removing, if it does not actually remove, the whole of the difference between us. He is contending, against Sir William Hamilton, that all matter has weight. Sir William, in proof of the contrary, cited the luminiferous ether, and the calorific and electric fluids, "which," he said, "we can neither denude of their character of substance, nor clothe with the attribute of weight." "To which," continues Dr. Whewell, "my reply is, that precisely because I can not clothe these agents with the attribute of Weight, I do denude them of the character of Substance. They are not substances, but agencies. These Imponderable Agents are not properly called Imponderable Fluids. This I conceive that I have proved." Nothing can be more philosophical. But if the luminiferous ether is not matter, and fluid matter, too, what is the meaning of its undulations? Can an agency undulate? Can there be alternate motion forward and backward of the particles of an agency? And does not the whole mathematical theory of the undulations imply them to be material? Is it not a series of deductions from the known properties of elastic fluids? This opinion of Dr. Whewell reduces the undulations to a figure of speech, and the undulatory theory to the proposition which all must admit, that the transmission of light takes place according to laws which present a very striking and remarkable agreement with those of undulations. If Dr. Whewell is prepared to stand by this doctrine, I have no difference with him on the subject.

171 Thus water, of which eight-ninths in weight are oxygen, dissolves most bodies which contain a high proportion of oxygen, such as all the nitrates (which have more oxygen than any others of the common salts), most of the sulphates, many of the carbonates, etc. Again, bodies largely composed of combustible elements, like hydrogen and carbon, are soluble in bodies of similar composition; resin, for instance, will dissolve in alcohol, tar in oil of turpentine. This empirical generalization is far from being universally true; no doubt because it is a remote, and therefore easily defeated, result of general laws too deep for us at present to penetrate; but it will probably in time suggest processes of inquiry, leading to the discovery of those laws.

172 Or, according to Laplace's theory, the sun and the sun's rotation.

173 Supra, book iii., chap. v., 7.

174 Supra, book iii., chap. x., 2

175 In the preceding discussion, the mean is spoken of as if it were exactly the same thing with the average. But the mean, for purposes of inductive inquiry, is not the average, or arithmetical mean, though in a familiar illustration of the theory the difference may be disregarded. If the deviations on one side of the average are much more numerous than those on the other (these last being fewer but greater), the effect due to the invariable cause, as distinct from the variable ones, will not coincide with the average, but will be either below or above the average, the deviation being toward the side on which the greatest number of the instances are found. This follows from a truth, ascertained both inductively and deductively, that small deviations from the true central point are greatly more frequent than large ones. The mathematical law is, "that the most probable determination of one or more invariable elements from observation is that in which the sum of the squares of the individual aberrations," or deviations, "shall be the least possible." See this principle stated, and its grounds popularly explained, by Sir John Herschel, in his review of Quetelet on Probabilities, Essays, p. 395 et seq.

176 Essai Philosophique sur les Probabilites, fifth Paris edition, p. 7.

177 It even appears to me that the calculation of chances, where there are no data grounded either on special experience or on special inference, must, in an immense majority of cases, break down, from sheer impossibility of assigning any principle by which to be guided in setting out the list of possibilities. In the case of the colored balls we have no difficulty in making the enumeration, because we ourselves determine what the possibilities shall be. But suppose a case more analogous to those which occur in nature: instead of three colors, let there be in the box all possible colors, we being supposed ignorant of the comparative frequency with which different colors occur in nature, or in the productions of art. How is the list of cases to be made out? Is every distinct shade to count as a color? If so, is the test to be a common eye, or an educated eye—a painter's, for instance? On the answer to these questions would depend whether the chances against some particular color would be estimated at ten, twenty, or perhaps five hundred to one. While if we knew from experience that the particular color occurs on an average a certain number of times in every hundred or thousand, we should not require to know any thing either of the frequency or of the number of the other possibilities.

178 Prospective Review for February, 1850.

179 "If this be not so, why do we feel so much more probability added by the first instance than by any single subsequent instance? Why, except that the first instance gives us its possibility (a cause adequate to it), while every other only gives us the frequency of its conditions? If no reference to a cause be supposed, possibility would have no meaning; yet it is clear that, antecedent to its happening, we might have supposed the event impossible, i.e., have believed that there was no physical energy really existing in the world equal to producing it.... After the first time of happening, which is, then, more important to the whole probability than any other single instance (because proving the possibility), the number of times becomes important as an index to the intensity or extent of the cause, and its independence of any particular time. If we took the case of a tremendous leap, for instance, and wished to form an estimate of the probability of its succeeding a certain number of times; the first instance, by showing its possibility (before doubtful) is of the most importance; but every succeeding leap shows the power to be more perfectly under control, greater and more invariable, and so increases the probability; and no one would think of reasoning in this case straight from one instance to the next, without referring to the physical energy which each leap indicated. Is it not, then, clear that we do not ever" (let us rather say, that we do not in an advanced state of our knowledge) "conclude directly from the happening of an event to the probability of its happening again; but that we refer to the cause, regarding the past cases as an index to the cause, and the cause as our guide to the future?"—Ibid.

180 The writer last quoted says that the valuation of chances by comparing the number of cases in which the event occurs with the number in which it does not occur, "would generally be wholly erroneous," and "is not the true theory of probability." It is at least that which forms the foundation of insurance, and of all those calculations of chances in the business of life which experience so abundantly verifies. The reason which the reviewer gives for rejecting the theory is, that it "would regard an event as certain which had hitherto never failed; which is exceedingly far from the truth, even for a very large number of constant successes." This is not a defect in a particular theory, but in any theory of chances. No principle of evaluation can provide for such a case as that which the reviewer supposes. If an event has never once failed, in a number of trials sufficient to eliminate chance, it really has all the certainty which can be given by an empirical law; it is certain during the continuance of the same collocation of causes which existed during the observations. If it ever fails, it is in consequence of some change in that collocation. Now, no theory of chances will enable us to infer the future probability of an event from the past, if the causes in operation, capable of influencing the event, have intermediately undergone a change.

181 Pp. 18, 19. The theorem is not stated by Laplace in the exact terms in which I have stated it; but the identity of import of the two modes of expression is easily demonstrable.

182 For a fuller treatment of the many interesting questions raised by the theory of probabilities, I may now refer to a recent work by Mr. Venn, Fellow of Caius College, Cambridge, "The Logic of Chance;" one of the most thoughtful and philosophical treatises on any subject connected with Logic and Evidence which have been produced, to my knowledge, for many years. Some criticisms contained in it have been very useful to me in revising the corresponding chapters of the present work. In several of Mr. Venn's opinions, however, I do not agree. What these are will be obvious to any reader of Mr. Venn's work who is also a reader of this.

183 Hartley's Observations on Man, vol. i., p. 16. The passage is not in Priestley's curtailed edition.

184 I am happy to be able to quote the following excellent passage from Mr. Baden Powell's Essay on the Inductive Philosophy, in confirmation, both in regard to history and to doctrine, of the statement made in the text. Speaking of the "conviction of the universal and permanent uniformity of nature," Mr. Powell says (pp. 98-100):

"We may remark that this idea, in its proper extent, is by no means one of popular acceptance or natural growth. Just so far as the daily experience of every one goes, so far indeed he comes to embrace a certain persuasion of this kind, but merely to this limited extent, that what is going on around him at present, in his own narrow sphere of observation, will go on in like manner in future. The peasant believes that the sun which rose to-day will rise again to-morrow; that the seed put into the ground will be followed in due time by the harvest this year as it was last year, and the like; but has no notion of such inferences in subjects beyond his immediate observation. And it should be observed that each class of persons, in admitting this belief within the limited range of his own experience, though he doubt or deny it in every thing beyond, is, in fact, bearing unconscious testimony to its universal truth. Nor, again, is it only among the most ignorant that this limitation is put upon the truth. There is a very general propensity to believe that every thing beyond common experience, or especially ascertained laws of nature, is left to the dominion of chance or fate or arbitrary intervention; and even to object to any attempted explanation by physical causes, if conjecturally thrown out for an apparently unaccountable phenomenon.

"The precise doctrine of the generalization of this idea of the uniformity of nature, so far from being obvious, natural, or intuitive, is utterly beyond the attainment of the many. In all the extent of its universality it is characteristic of the philosopher. It is clearly the result of philosophic cultivation and training, and by no means the spontaneous offspring of any primary principle naturally inherent in the mind, as some seem to believe. It is no mere vague persuasion taken up without examination, as a common prepossession to which we are always accustomed; on the contrary, all common prejudices and associations are against it. It is pre-eminently an acquired idea. It is not attained without deep study and reflection. The best informed philosopher is the man who most firmly believes it, even in opposition to received notions; its acceptance depends on the extent and profoundness of his inductive studies."

185 Supra, book iii., chap. iii., 1

186 It deserves remark, that these early generalizations did not, like scientific inductions, presuppose causation. What they did presuppose, was uniformity in physical facts. But the observers were as ready to presume uniformity in the co-existence of facts as in the sequences. On the other hand, they never thought of assuming that this uniformity was a principle pervading all nature: their generalizations did not imply that there was uniformity in every thing, but only that as much uniformity as existed within their observation, existed also beyond it. The induction, fire burns, does not require for its validity that all nature should observe uniform laws, but only that there should be uniformity in one particular class of natural phenomena; the effects of fire on the senses and on combustible substances. And uniformity to this extent was not assumed, anterior to the experience, but proved by the experience. The same observed instances which proved the narrower truth, proved as much of the wider one as corresponded to it. It is from losing sight of this fact, and considering the law of causation in its full extent as necessarily presupposed in the very earliest generalizations, that persons have been led into the belief that the law of causation is known a priori, and is not itself a conclusion from experience.

187 Book ii., chap. iii.

188 One of the most rising thinkers of the new generation in France, M. Taine (who has given, in the Revue des Deux Mondes, the most masterly analysis, at least in one point of view, ever made of the present work), though he rejects, on this and similar points of psychology, the intuition theory in its ordinary form, nevertheless assigns to the law of causation, and to some other of the most universal laws, that certainty beyond the bounds of human experience, which I have not been able to accord to them. He does this on the faith of our faculty of abstraction, in which he seems to recognize an independent source of evidence, not indeed disclosing truths not contained in our experience, but affording an assurance which experience can not give, of the universality of those which it does contain. By abstraction M. Taine seems to think that we are able, not merely to analyze that part of nature which we see, and exhibit apart the elements which pervade it, but to distinguish such of them as are elements of the system of nature considered as a whole, not incidents belonging to our limited terrestrial experience. I am not sure that I fully enter into M. Taine's meaning; but I confess I do not see how any mere abstract conception, elicited by our minds from our experience, can be evidence of an objective fact in universal Nature, beyond what the experience itself bears witness of; or how, in the process of interpreting in general language the testimony of experience, the limitations of the testimony itself can be cast off.

Dr. Ward, in an able article in the Dublin Review for October, 1871, contends that the uniformity of nature can not be proved from experience, but from "transcendental considerations" only, and that, consequently, all physical science would be deprived of its basis, if such transcendental proof were impossible.

When physical science is said to depend on the assumption that the course of nature is invariable, all that is meant is that the conclusions of physical science are not known as absolute truths: the truth of them is conditional on the uniformity of the course of nature; and all that the most conclusive observations and experiments can prove, is that the result arrived at will be true if, and as long as, the present laws of nature are valid. But this is all the assurance we require for the guidance of our conduct. Dr. Ward himself does not think that his transcendental proofs make it practically greater; for he believes, as a Catholic, that the course of nature not only has been, but frequently and even daily is, suspended by supernatural intervention.

But though this conditional conclusiveness of the evidence of experience, which is sufficient for the purposes of life, is all that I was necessarily concerned to prove, I have given reasons for thinking that the uniformity, as itself a part of experience, is sufficiently proved to justify undoubting reliance on it. This Dr. Ward contests, for the following reasons:

First (p. 315), supposing it true that there has hitherto been no well authenticated case of a breach in the uniformity of nature; "the number of natural agents constantly at work is incalculably large; and the observed cases of uniformity in their action must be immeasurably fewer than one thousandth of the whole. Scientific men, we assume for the moment, have discovered that in a certain proportion of instances—immeasurably fewer than one thousandth of the whole—a certain fact has prevailed; the fact of uniformity; and they have not found a single instance in which that fact does not prevail. Are they justified, we ask, in inferring from these premises that the fact is universal? Surely the question answers itself. Let us make a very grotesque supposition, in which, however, the conclusion would really be tried according to the arguments adduced. In some desert of Africa there is an enormous connected edifice, surrounding some vast space, in which dwell certain reasonable beings, who are unable to leave the inclosure. In this edifice are more than a thousand chambers, which some years ago were entirely locked up, and the keys no one knew where. By constant diligence twenty-five keys have been found, out of the whole number; and the corresponding chambers, situated promiscuously throughout the edifice, have been opened. Each chamber, when examined, is found to be in the precise shape of a dodecahedron. Are the inhabitants justified on that account in holding with certitude that the remaining 975 chambers are built on the same plan?"

Not with perfect certitude, but (if the chambers to which the keys have been found are really "situated promiscuously") with so high a degree of probability that they would be justified in acting upon the presumption until an exception appeared.

Dr. Ward's argument, however, does not touch mine as it stands in the text. My argument is grounded on the fact that the uniformity of the course of nature as a whole, is constituted by the uniform sequences of special effects from special natural agencies; that the number of these natural agencies in the part of the universe known to us is not incalculable, nor even extremely great; that we have now reason to think that at least the far greater number of them, if not separately, at least in some of the combinations into which they enter, have been made sufficiently amenable to observation, to have enabled us actually to ascertain some of their fixed laws; and that this amount of experience justifies the same degree of assurance that the course of nature is uniform throughout, which we previously had of the uniformity of sequence among the phenomena best known to us. This view of the subject, if correct, destroys the force of Dr. Ward's first argument.

His second argument is, that many or most persons, both scientific and unscientific, believe that there are well authenticated cases of breach in the uniformity of nature, namely, miracles. Neither does this consideration touch what I have said in the text. I admit no other uniformity in the events of nature than the law of Causation; and (as I have explained in the chapter of this volume which treats of the Grounds of Disbelief) a miracle is no exception to that law. In every case of alleged miracle, a new antecedent is affirmed to exist; a counteracting cause, namely, the volition of a supernatural being. To all, therefore, to whom beings with superhuman power over nature are a vera causa, a miracle is a case of the Law of Universal Causation, not a deviation from it.

Dr. Ward's last, and as he says, strongest argument, is the familiar one of Reid, Stewart, and their followers—that whatever knowledge experience gives us of the past and present, it gives us none of the future. I confess that I see no force whatever in this argument. Wherein does a future fact differ from a present or a past fact, except in their merely momentary relation to the human beings at present in existence? The answer made by Priestley, in his Examination of Reid, seems to me sufficient, viz., that though we have had no experience of what is future, we have had abundant experience of what was future. The "leap in the dark" (as Professor Bain calls it) from the past to the future, is exactly as much in the dark and no more, as the leap from a past which we have personally observed, to a past which we have not. I agree with Mr. Bain in the opinion that the resemblance of what we have not experienced to what we have, is, by a law of our nature, presumed through the mere energy of the idea, before experience has proved it. This psychological truth, however, is not, as Dr. Ward when criticising Mr. Bain appears to think, inconsistent with the logical truth that experience does prove it. The proof comes after the presumption, and consists in its invariable verification by experience when the experience arrives. The fact which while it was future could not be observed, having as yet no existence, is always, when it becomes present and can be observed, found conformable to the past.

Dr. M'Cosh maintains (Examination of Mr. J. S. Mill's Philosophy, p. 257) that the uniformity of the course of nature is a different thing from the law of causation; and while he allows that the former is only proved by a long continuance of experience, and that it is not inconceivable nor necessarily incredible that there may be worlds in which it does not prevail, he considers the law of causation to be known intuitively. There is, however, no other uniformity in the events of nature than that which arises from the law of causation: so long therefore as there remained any doubt that the course of nature was uniform throughout, at least when not modified by the intervention of a new (supernatural) cause, a doubt was necessarily implied, not indeed of the reality of causation, but of its universality. If the uniformity of the course of nature has any exceptions—if any events succeed one another without fixed laws—to that extent the law of causation fails; there are events which do not depend on causes.

189 Book i., chap. vii.

190 In some cases, a Kind is sufficiently identified by some one remarkable property: but most commonly several are required; each property considered singly, being a joint property of that and of other Kinds. The color and brightness of the diamond are common to it with the paste from which false diamonds are made; its octohedral form is common to it with alum, and magnetic iron ore; but the color and brightness and the form together, identify its Kind: that is, are a mark to us that it is combustible; that when burned it produces carbonic acid; that it can not be cut with any known substance; together with many other ascertained properties, and the fact that there exist an indefinite number still unascertained.

191 This doctrine of course assumes that the allotropic forms of what is chemically the same substance are so many different Kinds; and such, in the sense in which the word Kind is used in this treatise, they really are.

192 Professor Bain (Logic, ii., 13) mentions two empirical laws, which he considers to be, with the exception of the law connecting Gravity with Resistance to motion, "the two most widely operating laws as yet discovered whereby two distinct properties are conjoined throughout substances generally." The first is, "a law connecting Atomic Weight and Specific Heat by an inverse proportion. For equal weights of the simple bodies, the atomic weight multiplied by a number expressing the specific heat, gives a nearly uniform product. The products, for all the elements, are near the constant number 6." The other is a law which obtains "between the specific gravity of substances in the gaseous state, and the atomic weights. The relationship of the two numbers is in some instances equality; in other instances the one is a multiple of the other."

Neither of these generalizations has the smallest appearance of being an ultimate law. They point unmistakably to higher laws. Since the heat necessary to raise to a given temperature the same weight of different substances (called their specific heat) is inversely as their atomic weight, that is, directly as the number of atoms in a given weight of the substance, it follows that a single atom of every substance requires the same amount of heat to raise it to a given temperature; a most interesting and important law, but a law of causation. The other law mentioned by Mr. Bain points to the conclusion, that in the gaseous state all substances contain, in the same space, the same number of atoms; which, as the gaseous state suspends all cohesive force, might naturally be expected, though it could not have been positively assumed. This law may also be a result of the mode of action of causes, namely, of molecular motions. The cases in which one of the numbers is not identical with the other, but a multiple of it, may be explained on the nowise unlikely supposition, that in our present estimate of the atomic weights of some substances, we mistake two, or three, atoms for one, or one for several.

193 Dr. M'Cosh (p. 324 of his book) considers the laws of the chemical composition of bodies as not coming under the principle of Causation; and thinks it an omission in this work not to have provided special canons for their investigation and proof. But every case of chemical composition is, as I have explained, a case of causation. When it is said that water is composed of hydrogen and oxygen, the affirmation is that hydrogen and oxygen, by the action on one another which they exert under certain conditions, generate the properties of water. The Canons of Induction, therefore, as laid down in this treatise, are applicable to the case. Such special adaptations as the Inductive methods may require in their application to chemistry, or any other science, are a proper subject for any one who treats of the logic of the special sciences, as Professor Bain has done in the latter part of his work; but they do not appertain to General Logic.

Dr. M'Cosh also complains (p. 325) that I have given no canons for those sciences in which "the end sought is not the discovery of Causes or of Composition, but of Classes; that is, Natural Classes." Such canons could be no other than the principles and rules of Natural Classification, which I certainly thought that I had expounded at considerable length. But this is far from the only instance in which Dr. M'Cosh does not appear to be aware of the contents of the books he is criticising.

194 Mr. De Morgan, in his Formal Logic, makes the just remark, that from two such premises as Most A are B, and Most A are C, we may infer with certainty that some B are C. But this is the utmost limit of the conclusions which can be drawn from two approximate generalizations, when the precise degree of their approximation to universality is unknown or undefined.

195 Rationale of Judicial Evidence, vol. iii., p. 224.

196 The evaluation of the chances in this statement has been objected to by a mathematical friend. The correct mode, in his opinion, of setting out the possibilities is as follows. If the thing (let us call it T) which is both an A and a C, is a B, something is true which is only true twice in every thrice, and something else which is only true thrice in every four times. The first fact being true eight times in twelve, and the second being true six times in every eight, and consequently six times in those eight; both facts will be true only six times in twelve. On the other hand, if T, although it is both an A and a C, is not a B, something is true which is only true once in every thrice, and something else which is only true once in every four times. The former being true four times out of twelve, and the latter once in every four, and therefore once in those four; both are only true in one case out of twelve. So that T is a B six times in twelve, and T is not a B, only once: making the comparative probabilities, not eleven to one, as I had previously made them, but six to one.

In the last edition I accepted this reasoning as conclusive. More attentive consideration, however, has convinced me that it contains a fallacy.

The objector argues, that the fact of A's being a B is true eight times in twelve, and the fact of C's being a B six times in eight, and consequently six times in those eight; both facts, therefore, are true only six times in every twelve. That is, he concludes that because among As taken indiscriminately only eight out of twelve are Bs and the remaining four are not, it must equally hold that four out of twelve are not Bs when the twelve are taken from the select portion of As which are also Cs. And by this assumption he arrives at the strange result, that there are fewer Bs among things which are both As and Cs than there are among either As or Cs taken indiscriminately; so that a thing which has both chances of being a B, is less likely to be so than if it had only the one chance or only the other.

The objector (as has been acutely remarked by another correspondent) applies to the problem under consideration, a mode of calculation only suited to the reverse problem. Had the question been—If two of every three Bs are As and three out of every four Bs are Cs, how many Bs will be both As and Cs, his reasoning would have been correct. For the Bs that are both As and Cs must be fewer than either the Bs that are As or the Bs that are Cs, and to find their number we must abate either of these numbers in the ratio due to the other. But when the problem is to find, not how many Bs are both As and Cs, but how many things that are both As and Cs are Bs, it is evident that among these the proportion of Bs must be not less, but greater, than among things which are only A, or among things which are only B.

The true theory of the chances is best found by going back to the scientific grounds on which the proportions rest. The degree of frequency of a coincidence depends on, and is a measure of, the frequency, combined with the efficacy, of the causes in operation that are favorable to it. If out of every twelve As taken indiscriminately eight are Bs and four are not, it is implied that there are causes operating on A which tend to make it a B, and that these causes are sufficiently constant and sufficiently powerful to succeed in eight out of twelve cases, but fail in the remaining four. So if of twelve Cs, nine are Bs and three are not, there must be causes of the same tendency operating on C, which succeed in nine cases and fail in three. Now suppose twelve cases which are both As and Cs. The whole twelve are now under the operation of both sets of causes. One set is sufficient to prevail in eight of the twelve cases, the other in nine. The analysis of the cases shows that six of the twelve will be Bs through the operation of both sets of causes; two more in virtue of the causes operating on A; and three more through those operating on C, and that there will be only one case in which all the causes will be inoperative. The total number, therefore, which are Bs will be eleven in twelve, and the evaluation in the text is correct.

197 Supra, book i., chap. v.

198 Supra, book i., chap. v., 1, and book ii., chap, v., 5.

199 The axiom, "Equals subtracted from equals leave equal differences," may be demonstrated from the two axioms in the text. If A = a and B = b, A-B = a-b. For if not, let A-B = a-b+c. Then since B = b, adding equals to equals, A = a+c. But A = a. Therefore a = a+c, which is impossible.

This proposition having been demonstrated, we may, by means of it, demonstrate the following: "If equals be added to unequals, the sums are unequal." If A = a and B not = b, A+B is not = a+b. For suppose it to be so. Then, since A = a and A+B = a+b, subtracting equals from equals, B = b; which is contrary to the hypothesis.

So again, it may be proved that two things, one of which is equal and the other unequal to a third thing, are unequal to one another. If A = a and A not = B, neither is a = B. For suppose it to be equal. Then since A = a and a = B, and since things equal to the same thing are equal to one another A = B; which is contrary to the hypothesis.

200 Geometers have usually preferred to define parallel lines by the property of being in the same plane and never meeting. This, however, has rendered it necessary for them to assume, as an additional axiom, some other property of parallel lines; and the unsatisfactory manner in which properties for that purpose have been selected by Euclid and others has always been deemed the opprobrium of elementary geometry. Even as a verbal definition, equidistance is a fitter property to characterize parallels by, since it is the attribute really involved in the signification of the name. If to be in the same plane and never to meet were all that is meant by being parallel, we should feel no incongruity in speaking of a curve as parallel to its asymptote. The meaning of parallel lines is, lines which pursue exactly the same direction, and which, therefore, neither draw nearer nor go farther from one another; a conception suggested at once by the contemplation of nature. That the lines will never meet is of course included in the more comprehensive proposition that they are everywhere equally distant. And that any straight lines which are in the same plane and not equidistant will certainly meet, may be demonstrated in the most rigorous manner from the fundamental property of straight lines assumed in the text, viz., that if they set out from the same point, they diverge more and more without limit.

201 Philosophie Positive, iii., 414-416.

202 See the two remarkable notes (A) and (F), appended to his Inquiry into the Relation of Cause and Effect.

203 Supra, p. 413.

204 A writer to whom I have several times referred, gives as the definition of an impossibility, that which there exists in the world no cause adequate to produce. This definition does not take in such impossibilities as these—that two and two should make five; that two straight lines should inclose a space; or that any thing should begin to exist without a cause. I can think of no definition of impossibility comprehensive enough to include all its varieties, except the one which I have given: viz., An impossibility is that, the truth of which would conflict with a complete induction, that is, with the most conclusive evidence which we possess of universal truth.

As to the reputed impossibilities which rest on no other grounds than our ignorance of any cause capable of producing the supposed effects; very few of them are certainly impossible, or permanently incredible. The facts of traveling seventy miles an hour, painless surgical operations, and conversing by instantaneous signals between London and New York, held a high place, not many years ago, among such impossibilities.

205 Not, however, as might at first sight appear, 999 times as much. A complete analysis of the cases shows that (always assuming the veracity of the witness to be 9/10) in 10,000 drawings, the drawing of No. 79 will occur nine times, and be announced incorrectly once; the credibility, therefore, of the announcement of No. 79 is 9/10; while the drawing of a white ball will occur nine times, and be announced incorrectly 999 times. The credibility, therefore, of the announcement of white is 9/1008, and the ratio of the two 1008:10; the one announcement being thus only about a hundred times more credible than the other, instead of 999 times.

206 Supra, book iii., chap. ii., 3, 4, 5.

207 Mr. Bailey has given the best statement of this theory. "The general name," he says, "raises up the image sometimes of one individual of the class formerly seen, sometimes of another, not unfrequently of many individuals in succession; and it sometimes suggests an image made up of elements from several different objects, by a latent process of which I am not conscious." (Letters on the Philosophy of the Human Mind, 1st series, letter 22.) But Mr. Bailey must allow that we carry on inductions and ratiocinations respecting the class, by means of this idea or conception of some one individual in it. This is all I require. The name of a class calls up some idea, through which we can, to all intents and purposes, think of the class as such, and not solely of an individual member of it.

208 I have entered rather fully into this question in chap. xvii. of An Examination of Sir William Hamilton's Philosophy, headed "The Doctrine of Concepts or General Notions," which contains my last views on the subject.

209 Other examples of inappropriate conceptions are given by Dr. Whewell (Phil. Ind. Sc. ii., 185) as follows: "Aristotle and his followers endeavored in vain to account for the mechanical relation of forces in the lever, by applying the inappropriate geometrical conceptions of the properties of the circle: they failed in explaining the form of the luminous spot made by the sun shining through a hole, because they applied the inappropriate conception of a circular quality in the sun's light: they speculated to no purpose about the elementary composition of bodies, because they assumed the inappropriate conception of likeness between the elements and the compound, instead of the genuine notion of elements merely determining the qualities of the compound." But in these cases there is more than an inappropriate conception; there is a false conception; one which has no prototype in nature, nothing corresponding to it in facts. This is evident in the last two examples, and is equally true in the first; the "properties of the circle" which were referred to, being purely fantastical. There is, therefore, an error beyond the wrong choice of a principle of generalization; there is a false assumption of matters of fact. The attempt is made to resolve certain laws of nature into a more general law, that law not being one which, though real, is inappropriate, but one wholly imaginary.

210 Professor Bain.

211 This sentence having been erroneously understood as if I had meant to assert that belief is nothing but an irresistible association, I think it necessary to observe that I express no theory respecting the ultimate analysis either of reasoning or of belief, two of the most obscure points in analytical psychology. I am speaking not of the powers themselves, but of the previous conditions necessary to enable those powers to exert themselves: of which conditions I am contending that language is not one, senses and association being sufficient without it. The irresistible association theory of belief, and the difficulties connected with the subject, have been discussed at length in the notes to the new edition of Mr. James Mill's Analysis of the Phenomena of the Human Mind.

212 Mr. Bailey agrees with me in thinking that whenever "from something actually present to my senses, conjoined with past experience, I feel satisfied that something has happened, or will happen, or is happening, beyond the sphere of my personal observation," I may with strict propriety be said to reason: and of course to reason inductively, for demonstrative reasoning is excluded by the circumstances of the case. (The Theory of Reasoning, 2d ed., p. 27.)

213 Novum Organum Renovatum, pp. 35-37.

214 Novum Organum Renovatum, pp. 39, 40.

215 P. 217, 4to edition.

216 "E, ex, extra, extraneus, etranger, stranger."

Another etymological example sometimes cited is the derivation of the English uncle from the Latin avus. It is scarcely possible for two words to bear fewer outward marks of relationship, yet there is but one step between them, avus, avunculus, uncle. So pilgrim, from ager: per agrum, peragrinus, peregrinus, pellegrino, pilgrim. Professor Bain gives some apt examples of these transitions of meaning. "The word 'damp' primarily signified moist, humid, wet. But the property is often accompanied with the feeling of cold or chilliness, and hence the idea of cold is strongly suggested by the word. This is not all. Proceeding upon the superadded meaning, we speak of damping a man's ardor, a metaphor where the cooling is the only circumstance concerned; we go on still further to designate the iron slide that shuts off the draft of a stove, 'the damper,' the primary meaning being now entirely dropped. 'Dry,' in like manner, through signifying the absence of moisture, water, or liquidity, is applied to sulphuric acid containing water, although not thereby ceasing to be a moist, wet, or liquid substance." So in the phrases, dry sherry, or Champagne.

" 'Street,' originally a paved way, with or without houses, has been extended to roads lined with houses, whether paved or unpaved. 'Impertinent' signified at first irrelevant, alien to the purpose in hand: through which it has come to mean, meddling, intrusive, unmannerly, insolent." (Logic, ii., 173, 174.)

217 Pp. 226, 227.

218 Essays, p. 214.

219 Essays, p. 215.

220 Though no such evil consequences as take place in these instances are likely to arise from the modern freak of writing sanatory instead of sanitary, it deserves notice as a charming specimen of pedantry ingrafted upon ignorance. Those who thus undertake to correct the spelling of the classical English writers, are not aware that the meaning of sanatory, if there were such a word in the language, would have reference not to the preservation of health, but to the cure of disease.

221 Historical Introduction, vol. i., pp. 66-68.

222 History of Scientific Ideas, ii., 110, 111.

223 History of Scientific Ideas, ii., 111-113.

224 Nov. Org. Renov., pp. 286, 287.

225 History of Scientific Ideas, ii., 120-122.

226 Nov. Org. Renov., p. 274.

227 Hist. Sc. Id., i. 133.

228 Dr. Whewell, in his reply (Philosophy of Discovery, p. 270) says that he "stopped short of, or rather passed by, the doctrine of a series of organized beings," because he "thought it bad and narrow philosophy." If he did, it was evidently without understanding this form of the doctrine; for he proceeds to quote a passage from his "History," in which the doctrine he condemns is designated as that of "a mere linear progression in nature, which would place each genus in contact only with the preceding and succeeding ones." Now the series treated of in the text agrees with this linear progression in nothing whatever but in being a progression.

229 Supra, p. 137.

230 Vulgar Errors, book v., chap. 21.

231 Pharmacologia, Historical Introduction, p. 16.

232 The author of one of the Bridgewater Treatises has fallen, as it seems to me, into a similar fallacy when, after arguing in rather a curious way to prove that matter may exist without any of the known properties of matter, and may therefore be changeable, he concludes that it can not be eternal, because "eternal (passive) existence necessarily involves incapability of change." I believe it would be difficult to point out any other connection between the facts of eternity and unchangeableness, than a strong association between the two ideas. Most of the a priori arguments, both religious and anti-religious, on the origin of things, are fallacies drawn from the same source.

233 Supra, book ii., chap. v., 6, and chap. vii., 1, 2, 3, 4. See also Examination of Sir William Hamilton's Philosophy, chap. vi. and elsewhere.

234 It seems that this doctrine was, before the time I have mentioned, disputed by some thinkers. Dr. Ward mentions Scotus, Vasquez, Biel, Francis Lugo, and Valentia.

235 I quote this passage from Playfair's celebrated Dissertation on the Progress of Mathematical and Physical Science.

236 This statement I must now correct, as too unqualified. The maxim in question was maintained with full conviction by no less an authority than Sir William Hamilton. See my Examination, chap. xxiv.

237 Nouveaux Essais sur l'Entendement Humain—Avant-propos. (OEuvres, Paris ed., 1842, vol. i., p. 19.)

238 This doctrine also was accepted as true, and conclusions were grounded on it, by Sir William Hamilton. See Examination, chap. xxiv.

239 Not that of Leibnitz, but the principle commonly appealed to under that name by mathematicians.

240 Dissertation, p. 27.

241 Hist. Ind. Sc., Book i., chap. i.

242 Novum Organum, Aph. 75.

243 Supra, book iii., chap. vii., 4.

244 It is hardly needful to remark that nothing is here intended to be said against the possibility at some future period of making gold—by first discovering it to be a compound, and putting together its different elements or ingredients. But this is a totally different idea from that of the seekers of the grand arcanum.

245 Pharmacologia, pp. 43-45.

246 Vol. i., chap. 8.

247 Nov. Org., Aph. 46.

248 Playfair's Dissertation, sect. 4.

249 Nov. Org. Renov., p. 61.

250 Pharmacologia, p. 21.

251 Pharmacologia, pp. 23, 24.

252 Ibid., p. 28.

253 Ibid., p. 62.

254 Ibid., pp. 61, 62.

255 Supra, p. 450.

256 Elements of the Philosophy of the Mind, vol. ii., chap. 4, sect. 5.

257 "Thus Fourcroy," says Dr. Paris, "explained the operation of mercury by its specific gravity, and the advocates of this doctrine favored the general introduction of the preparations of iron, especially in scirrhus of the spleen or liver, upon the same hypothetical principle; for, say they, whatever is most forcible in removing the obstruction must be the most proper instrument of cure: such is steel, which, besides the attenuating power with which it is furnished, has still a greater force in this case from the gravity of its particles, which, being seven times specifically heavier than any vegetable, acts in proportion with a stronger impulse, and therefore is a more powerful deobstruent. This may be taken as a specimen of the style in which these mechanical physicians reasoned and practiced."—Pharmacologia, pp. 38, 39.

Previous Part     1 ... 14  15  16  17  18  19  20  21  22  23  24  25  26  27  28     Next Part
Home - Random Browse